pyrimidinones and dialuric-acid

pyrimidinones has been researched along with dialuric-acid* in 3 studies

Other Studies

3 other study(ies) available for pyrimidinones and dialuric-acid

ArticleYear
Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydroxypyrimidines, and their role in antioxidant defence.
    Free radical research communications, 1990, Volume: 8, Issue:4-6

    Dialuric Acid, the reduced form of the beta-cell toxin alloxan, and the related fava bean derivatives divicine and isouramil, autoxidize rapidly in neutral solution by a radical mechanism. GSH promotes redox cycling of each compound, with concomitant GSH oxidation and H2O2 production. With superoxide dismutase present, there is a lag period in which little oxidation occurs, followed by rapid oxidation. GSH extends this lag and decreases the subsequent rate of oxidation, so that with superoxide dismutase and a sufficient excess of GSH, coupled oxidation of GSH and each pyrimidine is almost completely suppressed. This mechanism may be a means whereby GSH in combination with superoxide dismutase protects against the cytotoxic effects of these reactive pyrimidines. Superoxide dismutase may also protect cells against oxidative stress in other situations where GSH acts as a radical scavenger, and we propose that the concerted action of GSH and superoxide dismutase constitutes an important antioxidant defence.

    Topics: Antioxidants; Barbiturates; Chemical Phenomena; Chemistry; Glutathione; Oxidation-Reduction; Pyrimidinones; Superoxide Dismutase

1990
Auto-oxidation of dialuric acid, divicine and isouramil. Superoxide dependent and independent mechanisms.
    Biochemical pharmacology, 1989, Feb-15, Volume: 38, Issue:4

    The toxicity of dialuric acid to pancreatic beta cells, and the haemolytic action of divicine and isouramil involve auto-oxidation and redox cycling reactions. Divicine and isouramil are produced on hydrolysis of the fava bean glycosides, vicine and convicine. The mechanism of auto-oxidation of the three compounds as well as the acid hydrolysis product of vicine (provisionally assigned the structure 2-amino-4,5,6-trihydroxypyrimidine) has been studied. All four pyrimidines auto-oxidized rapidly at neutral pH, generating H2O2 by an O2-dependent chain mechanism. Superoxide dismutase inhibited the initial oxidation, but inhibition was transitory, and after a lag period rapid oxidation occurred. The lag period varied with pH, temperature and pyrimidine concentration, and was much shorter for isouramil and divicine than for dialuric acid and acid-hydrolysed vicine. The initial rate of dialuric acid oxidation was greater and the acceleration less pronounced than with the other pyrimidines. A mechanism common to all four pyrimidines has been shown by kinetic analysis to account for nearly all the observations in the presence and absence of superoxide dismutase. Autocatalysis in the latter case is attributed mainly to the reactions reduced pyrimidine + oxidized pyrimidine in equilibrium 2 pyrimidine radical pyrimidine radical + O2----oxidized pyrimidine + O2- Rate constants for these and other reactions are reported. At pH 7.4 and 37 degrees the lag period before 100 microM acid-hydrolysed vicine underwent rapid oxidation was approx. 15 min. Isouramil and divicine at an equivalent concentration gave lags of less than 1 min, which became less at higher concentrations. Thus intracellular superoxide dismutase should provide only transitory protection against the oxidation products of dialuric acid, divicine or isouramil. Prolonged protection should only be achieved if accumulation of oxidized pyrimidine is also prevented.

    Topics: Alloxan; Barbiturates; In Vitro Techniques; Kinetics; Oxidation-Reduction; Pyrimidinones; Superoxides

1989
Release of iron from ferritin by divicine, isouramil, acid-hydrolyzed vicine, and dialuric acid and initiation of lipid peroxidation.
    Archives of biochemistry and biophysics, 1989, Volume: 271, Issue:2

    Release of iron from ferritin by the polyhydroxypyrimidines, dialuric acid, isouramil, divicine, and acid-hydrolyzed vicine, was measured. Iron was released at fast initial rates which gradually declined to zero in 10 min. All the compounds were better reductants for ferritin-iron under nitrogen than in air. The effects of superoxide dismutase, catalase, and glutathione on both initial rates and total iron released over 30 min in air were determined. Major effects were inhibition by superoxide dismutase for divicine and isouramil and enhancement for dialuric acid and acid-hydrolyzed vicine. Glutathione promoted increased iron release that was further enhanced by superoxide dismutase. These increases were particularly striking over the longer time period. Catalase, in all cases, gave modest enhancement. Enhanced iron release correlated with inhibition of pyrimidine oxidation. The results indicate that the reduced form of each pyrimidine releases ferritin iron directly, and the effects of the antioxidants are mainly to maintain or regenerate the reduced pyrimidines. A combination of each pyrimidine and ferritin caused peroxidation of phopholipid liposomes, above that seen with the pyrimidines and adventitious iron. Glutathione, superoxide dismutase, and catalase modulated lipid peroxidation in a way consistent with their effects being mainly on ferritin-iron release. On the basis of our findings, we propose that the release and subsequent reactions of ferritin-iron may contribute to the toxicity of these compounds. Although glutathione and superoxide dismutase together efficiently inhibit redox cycling and H2O2 production from the pyrimidines, this combination maximized iron release from ferritin and ferritin-dependent lipid peroxidation.

    Topics: Barbiturates; Catalase; Ferritins; Glucosides; Glutathione; Iron; Kinetics; Lipid Peroxidation; Liposomes; Oxidation-Reduction; Oxygen Consumption; Pyrimidines; Pyrimidinones; Superoxide Dismutase

1989