pyrimidinones and cholesterol-hydroperoxide

pyrimidinones has been researched along with cholesterol-hydroperoxide* in 2 studies

Other Studies

2 other study(ies) available for pyrimidinones and cholesterol-hydroperoxide

ArticleYear
Lipid peroxidation in photodynamically stressed mammalian cells: use of cholesterol hydroperoxides as mechanistic reporters.
    Free radical biology & medicine, 1997, Volume: 23, Issue:1

    Photodynamic action of merocyanine 540, an antileukemic sensitizing dye, on murine L1210 cells results in the formation of lipid hydroperoxides and loss of cell viability. High-performance liquid chromatography with mercury cathode electrochemical detection was used for determining lipid oxidation products, including the following cholesterol-derived hydroperoxides: 5 alpha-OOH, 6 alpha-OOH, 6 beta-OOH, and unresolved 7 alpha, 7 beta-OOH. Among these species, 5 alpha-, 6 alpha-, and 6 beta-OOH (singlet oxygen adducts) were predominant in the early stages of photooxidation, whereas 7 alpha- and 7 beta-OOH (products of free radical reactions) became so after prolonged irradiation or during dark incubation after exposure to a light dose. These mechanistic changes were studied in a unique way by monitoring shifts in the peroxide ratio, i.e., 7-OOH/5 alpha-OOH, or 7-OOH/6-OOH. When cells (10(7)/ml) were exposed to a visible light fluence of 0.6 J/cm2 in the presence of 10 microM merocyanine 540, 7-OOH/5 alpha-OOH increased by approximately 100% after 2 h of dark incubation at 37 degrees C. The increase was much larger (approximately 250%) when cells were photooxidized after treatment with 1 microM ferric-8-hydroxyquinoline, a lipophilic iron donor, whereas no increase was observed when cells were pretreated with 100 microM desferrioxamine, an avid iron chelator/redox inhibitor. Correspondingly, postirradiation formation of thiobarbituric acid-reactive material was markedly enhanced by ferric-8-hydroxyquinoline and suppressed by desferrioxamine, as was the extent of cell killing. When added to cells after a light dose, chain-breaking antioxidants such as butylated hydroxytoluene and alpha-tocopherol strongly protected against cell killing and slowed the increase in 7-OOH/5 alpha-OOH ratio. It is apparent from these results that (1) the 7-OOH/5 alpha-OOH or 7-OOH/6-OOH ratio can be used as a highly sensitive index of singlet oxygen vs. free radical dominance in photodynamically stressed cells; and (2) that postirradiation chain peroxidation plays an important role in photodynamically initiated cell killing.

    Topics: Animals; Butylated Hydroxytoluene; Cell Survival; Cholesterol; Chromatography, High Pressure Liquid; Deferoxamine; Free Radicals; Iron Compounds; Leukemia L1210; Light; Lipid Peroxidation; Lipid Peroxides; Mice; Photosensitizing Agents; Pyrimidinones; Reactive Oxygen Species; Thiobarbituric Acid Reactive Substances; Tumor Cells, Cultured

1997
Characterization of lipid hydroperoxides generated by photodynamic treatment of leukemia cells.
    Lipids, 1994, Volume: 29, Issue:7

    A new technique, high-performance liquid chromatography with reductive mode electrochemical detection on a mercury drop (HPLC-EC), has been used for analyzing lipid hydroperoxide (LOOH) formation in photooxidatively stressed L1210 leukemia cells. Highly specific and sensitive for peroxides (detection limits < 0.5 pmol for cholesterol hydroperoxides and < 50 pmol for phospholipid hydroperoxides), this approach allows different classes of LOOH to be separated and determined in minimally damaged cells. L1210 cells in serum-containing growth medium were irradiated in the presence of merocyanine 540 (MC540), a lipophilic photosensitizing dye. Lipid extracts from cells exposed to a light fluence of 0.11 J/cm2 (which reduced clonally assessed survival by 30%) showed 12-15 well-defined peaks in HPLC-EC. None of these peaks was observed when cells were irradiated without MC540 or when dye/light-treated samples were reduced with triphenylphosphine prior to analysis. Three peaks of relatively low retention time (< 12 min) were assigned to the following species by virtue of comigration with authentic standards: 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxycholest-5-ene-7 alpha/7 beta-hydroperoxide (7 alpha/7 beta-OOH). Formation of 5 alpha-OOH and 6 beta-OOH (single oxygen adducts) was confirmed by subjecting [14C]cholesterol-labeled cells to relatively high levels of photooxidation and analyzing extracted lipids by HPLC with radiochemical detection. Material represented in a major peak at 18-22 min on HPLC-EC was isolated in relatively large amounts by semipreparative HPLC and shown to contain phospholipid hydroperoxides (predominantly phosphatidylcholine species, PCOOH) according to the following criteria: (i) decay of 18-22 min peak during Ca2+/phospholipase A2 treatment, with reciprocal appearance of fatty acid hydroperoxides; (ii) reduction of peroxide during treatment with reduced glutathione and phospholipid hydroperoxide glutathione peroxidase, but not glutathione peroxidase; and (iii) comigration with PCOOH standards in thin-layer chromatography. HPLC-EC analysis revealed quantifiable amounts of PCOOH and ChOOH at a light fluence that clonally inactivated < 10% of the cells, which allows for the possibility that photoperoxidative damage plays a causal role in cell killing.

    Topics: Animals; Cholesterol; Chromatography, High Pressure Liquid; Fluorescent Dyes; Glutathione; Glutathione Peroxidase; Leukemia L1210; Lipid Peroxidation; Lipid Peroxides; Mice; Phosphatidylcholines; Phospholipases A; Photochemistry; Photosensitizing Agents; Pyrimidinones; Tumor Cells, Cultured

1994