pyrimidinones has been researched along with acetovanillone* in 2 studies
2 other study(ies) available for pyrimidinones and acetovanillone
Article | Year |
---|---|
The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells.
The pathophysiological relevance of S-nitrosoglutathione (GSNO)-induced endothelial cell injury remains unclear. The main objective of this study was to elucidate the molecular mechanisms of GSNO-induced oxidative stress in endothelial cells. Morphological evaluation through DAPI staining and propidium iodide (PI) flow cytometry was used to detect apoptosis. In cultured EA.hy926 endothelial cells, exposure to GSNO led to a time- and dose-dependent apoptotic cascade. When intracellular reactive oxygen species (ROS) production was measured in GSNO-treated cells with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, we observed elevated ROS levels and a concomitant loss in mitochondrial membrane potential, indicating that GSNO-induced death signaling is mediated through a ROS-mitochondrial pathway. Importantly, we found that peroxynitrite formation and Omi/HtrA2 release from mitochondria were involved in this phenomenon, whereas changes of death-receptor dependent signaling were not detected in the same context. The inhibition of NADPH oxidase activation and Omi/HtrA2 by a pharmacological approach provided significant protection against caspase-3 activation and GSNO-induced cell death, confirming that GSNO triggers the death cascade in endothelial cells in a mitochondria-dependent manner. Taken together, our results indicate that ROS overproduction and loss of mitochondrial Omi/HtrA2 play a pivotal role in reactive nitrogen species-induced cell death, and the modulation of these pathways can be of significant therapeutic benefit. Topics: Acetophenones; Apoptosis; Cell Line; Cell Survival; Cyclic N-Oxides; Cytotoxins; Endothelial Cells; High-Temperature Requirement A Serine Peptidase 2; Humans; Mitochondria; Mitochondrial Proteins; NADPH Oxidases; Nitric Oxide; Oxidative Stress; Peroxynitrous Acid; Pyrimidinones; Reactive Oxygen Species; S-Nitrosoglutathione; Serine Endopeptidases; Signal Transduction; Spin Labels; Thiones | 2010 |
Angiotensin II mediates postischemic leukocyte-endothelial interactions: role of calcitonin gene-related peptide.
Vascular inflammation and enhanced production of angiotensin II (ANG II) are involved in the pathogenesis of hypertension and diabetes, disease states that predispose the afflicted individuals to ischemic disorders. In light of these observations, we postulated that ANG II may play a role in promoting leukocyte rolling (LR) and adhesion (LA) in postcapillary venules after exposure of the small intestine to ischemia-reperfusion (I/R). Using an intravital microscopic approach in C57BL/6J mice, we showed that ANG II type I (AT(1)) or type II (AT(2)) receptor antagonism (with valsartan or PD-123319, respectively), inhibition of angiotensin-converting enzyme (ACE) with captopril, or calcitonin gene-related peptide (CGRP) receptor blockade (CGRP8-37) prevented postischemic LR but did not influence I/R-induced LA. However, both postischemic LR and LA were largely abolished by concomitant AT(1) and AT(2) receptor blockade or chymase inhibition (with Y-40079). Additionally, exogenously administered ANG II increased LR and LA, effects that were attenuated by pretreatment with a CGRP receptor antagonist or an NADPH oxidase inhibitor (apocynin). Our work suggests that ANG II, formed by the enzymatic activity of ACE and chymase, plays an important role in inducing postischemic LR and LA, effects that involve the engagement of both AT(1) and AT(2) receptors and may be mediated by CGRP and NADPH oxidase. Topics: Acetophenones; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Calcitonin Gene-Related Peptide; Captopril; Cell Adhesion; Chymases; Disease Models, Animal; Endothelial Cells; Imidazoles; Intestines; Ischemia; Leukocyte Rolling; Leukocytes; Male; Mice; Mice, Inbred C57BL; Microscopy, Video; NADPH Oxidases; Pyridines; Pyrimidinones; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Calcitonin Gene-Related Peptide; Reperfusion Injury; Tetrazoles; Valine; Valsartan; Venules | 2007 |