pyrimidinones and 4-hydroxy-2-nonenal

pyrimidinones has been researched along with 4-hydroxy-2-nonenal* in 2 studies

Other Studies

2 other study(ies) available for pyrimidinones and 4-hydroxy-2-nonenal

ArticleYear
Iron release and oxidant damage in human myoblasts by divicine.
    Life sciences, 2000, Volume: 66, Issue:6

    Divicine is an aglycone derived from vicine, a glucosidic compound contained in fava beans (Vicia faba major or broad beans). In this study, we investigated the effect of divicine on cultured human myoblasts from normal subjects, in order to see if the drug may induce signs of oxidant stress in these cells. Myoblasts incubated 24 hours in the presence of 1 mM divicine, showed an increase of carbonyl groups and 4-hydroxynonenal (4-HNE) bound to cell proteins, as well as a significant release of iron and lactate dehydrogenase in the culture medium. Desferrioxamine (DFO), an iron chelator, significantly prevented protein oxidation and formation 4-HNE adducts. Our results can be interpreted as indicating that divicine autooxidizes both at extracellular level and into myoblasts thus inducing the release of free iron, which initiates oxidation of cellular proteins and lipids. DFO protects the cells by subtracting the free iron both at intracellular and extracellular level.

    Topics: Aldehydes; Cells, Cultured; Deferoxamine; Humans; Iron; Muscle, Skeletal; Oxidative Stress; Pyrimidinones

2000
Cytotoxic effects of 6-hydroxydopamine, merocyanine-540 and related compounds on human neuroblastoma and hematopoietic stem cells.
    Free radical research communications, 1989, Volume: 7, Issue:3-6

    6-Hydroxydopamine(6-OHDA) and Merocyanine-540(MC-540) have been used clinically for purging of neuroblastoma cells prior to autologous bone marrow transplantation. Both substances were found to be more toxic against neuroblastoma cells than against hematopoietic stem cells. The more pronounced cytotoxic effects of 6-OHDA against neuroblastoma cells were not caused by its selective uptake; the rapid autooxidation at physiological pH leads to the formation of H2O2 already in the incubation medium. Cytotoxic effects were not detected in short-time test systems (4 hour chromium-51 release assay) but only after longer incubation periods. In contrast, MC-540 proved to be toxic almost equally in short- and long-time test systems. 4-Hydroxynonenal(4-HNE) that may be formed in the plasma membrane subsequently to photoactivation of MC-540 was only slightly more toxic to neuroblastoma cells than to hematopoietic cells. Although the use of 6-OHDA and MC-540 in bone marrow purging has some limitations, the sensitivity of neuroblastoma cells against reactive oxygen compounds may be exploited more generally for therapy of this tumor.

    Topics: Aldehydes; Antineoplastic Agents; Cell Survival; Hematopoietic Stem Cells; Humans; Hydrogen Peroxide; Hydroxydopamines; Neuroblastoma; Oxidopamine; Pyrimidinones; Tumor Cells, Cultured

1989