pyrazofurin has been researched along with cyclopentenyl-cytosine* in 3 studies
3 other study(ies) available for pyrazofurin and cyclopentenyl-cytosine
Article | Year |
---|---|
A mutant of Sindbis virus which is able to replicate in cells with reduced CTP makes a replicase/transcriptase with a decreased Km for CTP.
We reported earlier the isolation and characterization of a Sindbis virus mutant, SV(PZF), that can grow in mosquito cells treated with pyrazofurin (PZF), a compound that interferes with pyrimidine biosynthesis (Y. H. Lin, P. Yadav, R. Ravatn, and V. Stollar, Virology 272:61-71, 2000; Y. H. Lin, H. A. Simmonds, and V. Stollar, Virology 292:78-86, 2002). Three amino acid changes in nsP4, the viral RNA polymerase, were required to produce this phenotype. We now describe a mutant of Sindbis virus, SVCPC, that is resistant to cyclopentenylcytosine (CPC), a compound that interferes only with the synthesis of CTP. Thus, in contrast to SVPZF, which was selected for its ability to grow in mosquito cells with low levels of UTP and CTP, SVCPC was selected for its ability to grow in cells in which only the level of CTP was reduced. Although SV(PZF) was cross-resistant to CPC, SVCPC was not resistant to PZF. Only one amino acid change in nsP4, Leu 585 to Phe, was required for the CPC resistance phenotype. The viral replicase/transcriptase generated in SVCPC-infected mosquito cells had a lower Km for CTP (but not for UTP) than did the enzyme made in SVSTD-infected mosquito cells. SV(PZF) and SVCPC represent the first examples of viral mutants selected for the ability to grow in cells with low levels of ribonucleoside triphosphates (rNTPs). Further study of these mutants and determination of the structure of nsP4 should demonstrate how alterations in an RNA-dependent RNA polymerase permit it to function in cells with abnormally low levels of rNTPs. Topics: Aedes; Amides; Animals; Cell Line; Cytidine; Cytidine Triphosphate; Drug Resistance, Viral; Genes, Viral; Kinetics; Mutation; Pyrazoles; Ribonucleosides; Ribose; RNA-Dependent RNA Polymerase; RNA-Directed DNA Polymerase; Sindbis Virus; Virus Replication | 2004 |
Identification of active antiviral compounds against a New York isolate of West Nile virus.
The recent West Nile virus (WNV) outbreak in the United States has increased the need to identify effective therapies for this disease. A chemotherapeutic approach may be a reasonable strategy because the virus infection is typically not chronic and antiviral drugs have been identified to be effective in vitro against other flaviviruses. A panel of 34 substances was tested against infection of a recent New York isolate of WNV in Vero cells and active compounds were also evaluated in MA-104 cells. Some of these compounds were also evaluated in Vero cells against the 1937 Uganda isolate of the WNV. Six compounds were identified to be effective against virus-induced CPE with 50% effective concentrations (EC50) less than 10 microg/ml and with a selectivity index (SI) of greater than 10. Known inhibitors of orotidine monophosphate decarboxylase and inosine monophosphate dehydrogenase involved in the synthesis of GTP, UTP, and TTP were most effective. The compounds 6-azauridine, 6-azauridine triacetate, cyclopententylcytosine (CPE-C), mycophenolic acid and pyrazofurin appeared to have the greatest activities against the New York isolate, followed by 2-thio-6-azauridine. Anti-WNV activity of 6-azauridine was confirmed by virus yield reduction assay when the assay was performed 2 days after initial infection in Vero cells. The neutral red assay mean EC50 of ribavirin was only 106 microg/ml with a mean SI of 9.4 against the New York isolate and only slightly more effective against the Uganda isolate. There were some differences in the drug sensitivities of the New York and Uganda isolates, but when comparisons were made by categorizing drugs according to their modes of action, similarities of activities between the two isolates were identified. Topics: Amides; Animals; Antiviral Agents; Azauridine; Chlorocebus aethiops; Cytidine; Cytopathogenic Effect, Viral; Enzyme Inhibitors; Inhibitory Concentration 50; Mycophenolic Acid; New York; Pyrazoles; Ribavirin; Ribonucleosides; Ribose; Thiouridine; Vero Cells; Virus Replication; West Nile virus | 2002 |
Broad-spectrum antiviral and cytocidal activity of cyclopentenylcytosine, a carbocyclic nucleoside targeted at CTP synthetase.
Cyclopentenylcytosine (Ce-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [herpes (cytomegalo), pox (vaccinia)], (+)RNA viruses [picorna (polio, Coxsackie, rhino), toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), arena (Junin, Tacaribe), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). Ce-Cyd is a more potent antiviral agent than its saturated counterpart, cyclopentylcytosine (carbodine, C-Cyd). Ce-Cyd also has potent cytocidal activity against a number of tumor cell lines. The putative target enzyme for both the antiviral and antitumor action of Ce-Cyd is assumed to be the CTP synthetase that converts UTP to CTP. In keeping with this hypothesis was the finding that the antiviral and cytocidal effects of Ce-Cyd are readily reversed by Cyd and, to a lesser extent, Urd, but not by other nucleosides such as dThd or dCyd. In contrast, pyrazofurin and 6-azauridine, two nucleoside analogues that are assumed to interfere with OMP decarboxylase, another enzyme involved in the biosynthesis of pyrimidine ribonucleotides, potentiate the cytocidal activity of Ce-Cyd. Ce-Cyd should be further pursued, as such and in combination with OMP decarboxylase inhibitors, for its therapeutic potential in the treatment of both viral and neoplastic diseases. Topics: Adenosine; Amides; Antiviral Agents; Azauridine; Carbon-Nitrogen Ligases; Cell Division; Cytarabine; Cytidine; Deoxycytidine; Drug Synergism; Fluorouracil; HeLa Cells; Humans; Ligases; Nucleosides; Pyrazoles; Ribavirin; Ribonucleosides; Ribose; Thymidine; Tumor Cells, Cultured; Uracil; Virus Replication; Viruses | 1991 |