Page last updated: 2024-08-21

pyrazines and sorafenib

pyrazines has been researched along with sorafenib in 27 studies

Research

Studies (27)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (14.81)29.6817
2010's19 (70.37)24.3611
2020's4 (14.81)2.80

Authors

AuthorsStudies
Adjei, AA; Carter, CA; Friday, BB; Kaufmann, SH; Kay, NE; Lai, JP; Roberts, LR; Sarkaria, J; Yang, L; Yu, C1
Baradari, V; Höpfner, M; Huether, A; Scherübl, H; Schuppan, D1
Bauer, S; Bode, B; Knuth, A; Liewen, H; Renner, C; Samaras, P; Stenner, F; Tchinda, J; Weber, A; Zweifel, M1
Kagechika, H; Kurosu, T; Miura, O; Ohki, M; Wu, N1
Chen, KF; Chen, PJ; Cheng, AL; Lee, SS; Liu, TH; Yu, HC1
Davies, L; Hedley, D; Kirk, R; Lopes, F; Manne, HA; Marais, R; Ménard, D; Niculescu-Duvaz, D; Niculescu-Duvaz, I; Nourry, A; Ogilvie, LM; Preece, N; Springer, CJ; Suijkerbuijk, BM; Whittaker, S; Zambon, A1
Arango, BA; Cohen, EE; Perez, CA; Raez, LE; Santos, ES1
Bechelli, J; Ifthikharuddin, JJ; Jordan, CT; Liesveld, JL; Lu, C; Messina, P; Mulford, D; Phillips Ii, GL; Rosell, KE1
Barrière, J; Janus, N; Launay-Vacher, V; Thariat, J1
Brown, RE; Buryanek, J; Pfister, S; Rytting, ME; Vats, TS; Wolff, JE1
Buettner, R; Chang, S; Hedvat, M; Jove, R; Jove, V; Liu, L; Scuto, A; Tian, Y; Van Meter, T; Wen, W; Yang, F; Yen, Y; Yip, ML1
Bornfeld, N; Freistuehler, M; Hilger, RA; Scheulen, M; Steuhl, KP; Westekemper, H1
Catusse, J; Engelhardt, M; Follo, M; Ihorst, G; Schnerch, D; Schüler, J; Udi, J; Waldschmidt, J; Wäsch, R; Wider, D1
Andriamanana, I; Duretz, B; Gana, I; Hulin, A1
Eisner, F; Gerger, A; Pichler, M; Samonigg, H; Schaberl-Moser, R1
Adjei, AA; Bible, KC; Croghan, G; Erlichman, C; Jett, J; Kaufmann, SH; Kumar, SK; Markovic, SN; Marks, R; Molina, J; Moynihan, T; Qin, R; Quevedo, F; Richardson, R; Tan, A1
Aplenc, R; Caparas, M; Cullen, P; Johnston, DL; Nagarajan, R; Schulte, F; Sung, L1
Choi, Y; Hur, DY; Kim, D; Kim, YS; Lee, HK; Park, GB1
Allen, JW; Gandara, DR; Gitlitz, BJ; Kelly, K; Lara, PN; Mack, PC; Moon, J; Redman, MW; Semrad, TJ1
Bakonyi, T; Forgách, P; Gyuranecz, M; Marosi, A; Sulyok, KM1
Carella, N; Carr, BI; Cavallini, A; D'Alessandro, R; Lippolis, C; Messa, C; Refolo, MG1
Perl, AE1
Adamia, S; Buhrlage, SJ; Case, AE; Dubreuil, P; Gokhale, PC; Gray, N; Griffin, JD; Letard, S; Liu, X; Meng, C; Sattler, M; Stone, RM; Tiv, HL; Wang, J; Weisberg, E; Yang, J1
Antar, AI; Bazarbachi, A; Jabbour, E; Mohty, M; Otrock, ZK1
Adamia, S; Buhrlage, SJ; Case, AE; Gokhale, PC; Gray, N; Griffin, JD; Liu, X; Meng, C; Sattler, M; Stone, R; Tiv, HL; Wang, J; Weisberg, E; Yang, J1
Albors Ferreiro, M; Alonso Vence, N; Antelo Rodríguez, B; Bao Pérez, L; Bello López, JL; Cerchione, C; Cid López, M; Díaz Arias, JÁ; Ferreiro Ferro, R; González Pérez, MS; Martinelli, G; Mosquera Orgueira, A; Mosquera Torre, A; Peleteiro Raíndo, A; Pérez Encinas, MM1
Altman, JK; Chou, WC; Groß-Langenhoff, M; Hasabou, N; Hosono, N; Lee, JH; Levis, MJ; Lu, Q; Martinelli, G; Montesinos, P; Panoskaltsis, N; Perl, AE; Podoltsev, N; Recher, C; Röllig, C; Smith, CC; Strickland, S; Tiu, RV; Yokoyama, H1

Reviews

4 review(s) available for pyrazines and sorafenib

ArticleYear
Novel molecular targeted therapies for refractory thyroid cancer.
    Head & neck, 2012, Volume: 34, Issue:5

    Topics: Angiogenesis Inhibitors; Anilides; Antineoplastic Agents; Axitinib; Benzamides; Benzenesulfonates; Benzoquinones; Bibenzyls; Boronic Acids; Bortezomib; Depsipeptides; ErbB Receptors; Gefitinib; Histone Deacetylase Inhibitors; HSP90 Heat-Shock Proteins; Humans; Hydroxamic Acids; Imatinib Mesylate; Imidazoles; Indazoles; Indoles; Lactams, Macrocyclic; Lenalidomide; Niacinamide; Oligonucleotides; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pyrazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Quinolines; Receptor Protein-Tyrosine Kinases; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thalidomide; Thyroid Neoplasms; Valproic Acid; Vorinostat

2012
Availability of FLT3 inhibitors: how do we use them?
    Blood, 2019, 08-29, Volume: 134, Issue:9

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Benzothiazoles; Clinical Trials as Topic; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Sorafenib; Staurosporine

2019
FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions.
    Leukemia, 2020, Volume: 34, Issue:3

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Carbazoles; DNA Methylation; Enzyme Inhibitors; fms-Like Tyrosine Kinase 3; Furans; Humans; Leukemia, Myeloid, Acute; Mutation; Neoplasm Recurrence, Local; Phenylurea Compounds; Piperidines; Prognosis; Pyrazines; Randomized Controlled Trials as Topic; Sorafenib; Staurosporine; Treatment Outcome

2020
FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives.
    Minerva medica, 2020, Volume: 111, Issue:5

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Carbazoles; Drug Resistance, Multiple; Drug Resistance, Neoplasm; fms-Like Tyrosine Kinase 3; Forecasting; Furans; Hematopoietic Stem Cell Transplantation; Humans; Imidazoles; Leukemia, Myeloid, Acute; Maintenance Chemotherapy; Mutation; Phenylurea Compounds; Piperidines; Point Mutation; Protein Kinase Inhibitors; Pyrazines; Pyridazines; Recurrence; Sorafenib; Staurosporine

2020

Trials

5 trial(s) available for pyrazines and sorafenib

ArticleYear
Proteasome inhibition in myelodysplastic syndromes and acute myelogenous leukemia cell lines.
    Cancer investigation, 2011, Volume: 29, Issue:7

    Topics: Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Azacitidine; Benzenesulfonates; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Cytarabine; Cytokines; Farnesyltranstransferase; Hematopoietic Stem Cells; Humans; Leukemia, Myeloid, Acute; Myelodysplastic Syndromes; Niacinamide; Oxides; Phenylurea Compounds; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Pyridines; Sorafenib

2011
Preliminary experience with personalized and targeted therapy for pediatric brain tumors.
    Pediatric blood & cancer, 2012, Jul-15, Volume: 59, Issue:1

    Topics: Adolescent; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Bevacizumab; Biomarkers, Tumor; Boronic Acids; Bortezomib; Brain Neoplasms; Child; Child, Preschool; Curcumin; Disease-Free Survival; Estradiol; Female; Follow-Up Studies; Fulvestrant; Humans; Infant; Male; Niacinamide; Phenylurea Compounds; Pyrazines; Pyridines; Sirolimus; Sorafenib; Survival Rate

2012
Phase 1 study of sorafenib in combination with bortezomib in patients with advanced malignancies.
    Investigational new drugs, 2013, Volume: 31, Issue:5

    Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dose-Response Relationship, Drug; Female; Humans; Male; Maximum Tolerated Dose; Middle Aged; Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Sorafenib; Treatment Outcome; Young Adult

2013
Reasons for non-completion of health related quality of life evaluations in pediatric acute myeloid leukemia: a report from the Children's Oncology Group.
    PloS one, 2013, Volume: 8, Issue:9

    Topics: Adolescent; Boronic Acids; Bortezomib; Child; Child, Preschool; Female; Group Processes; Hematopoietic Stem Cell Transplantation; Humans; Leukemia, Myeloid, Acute; Male; Niacinamide; Parents; Phenylurea Compounds; Pyrazines; Quality of Life; Self Report; Sorafenib; Surveys and Questionnaires; Survival Analysis; Young Adult

2013
Relevance of platinum-sensitivity status in relapsed/refractory extensive-stage small-cell lung cancer in the modern era: a patient-level analysis of southwest oncology group trials.
    Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2015, Volume: 10, Issue:1

    Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease Progression; Drug Resistance, Neoplasm; Female; Humans; Lung Neoplasms; Male; Middle Aged; Neoplasm Staging; Niacinamide; Organoplatinum Compounds; Phenylurea Compounds; Pyrazines; Receptors, Vascular Endothelial Growth Factor; Recombinant Fusion Proteins; Recurrence; Small Cell Lung Carcinoma; Sorafenib; Topotecan; Young Adult

2015

Other Studies

18 other study(ies) available for pyrazines and sorafenib

ArticleYear
Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways.
    Molecular cancer therapeutics, 2006, Volume: 5, Issue:9

    Topics: Antineoplastic Agents; Apoptosis; Benzenesulfonates; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Synergism; Humans; JNK Mitogen-Activated Protein Kinases; Jurkat Cells; K562 Cells; MAP Kinase Signaling System; Niacinamide; Oncogene Protein v-akt; Phenylurea Compounds; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Pyridines; Sorafenib

2006
Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells.
    World journal of gastroenterology, 2007, Sep-07, Volume: 13, Issue:33

    Topics: Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Benzamides; Benzenesulfonates; Boronic Acids; Bortezomib; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cholangiocarcinoma; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Deoxycytidine; Doxorubicin; Drug Therapy, Combination; Gemcitabine; Histone Deacetylase Inhibitors; Humans; L-Lactate Dehydrogenase; Niacinamide; Phenylurea Compounds; Protease Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Pyridines; Sorafenib

2007
Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and in vivo.
    Cancer science, 2008, Volume: 99, Issue:9

    Topics: Antineoplastic Agents; Benzenesulfonates; Boronic Acids; Bortezomib; Carcinoma; Cell Line, Tumor; Humans; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins B-raf; Pyrazines; Pyridines; Sorafenib; Thyroid Neoplasms

2008
Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway.
    Cancer research, 2009, May-01, Volume: 69, Issue:9

    Topics: Acetophenones; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Benzamides; Benzenesulfonates; Benzopyrans; Biphenyl Compounds; Boronic Acids; Bortezomib; Caspases; Drug Resistance, Neoplasm; Drug Synergism; Enzyme Activation; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Interleukin-3; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Mitochondria; Mutation; Niacinamide; Nitrophenols; Phenylurea Compounds; Piperazines; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrazines; Pyridines; Pyrimidines; Sorafenib; Sulfonamides

2009
Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation.
    Journal of hepatology, 2010, Volume: 52, Issue:1

    Topics: Animals; Antineoplastic Agents; Apoptosis; Benzenesulfonates; Boronic Acids; Bortezomib; Carcinoma, Hepatocellular; Cell Line, Tumor; Disease Models, Animal; Drug Synergism; Humans; Liver Neoplasms; Male; Mice; Mice, Nude; Niacinamide; Okadaic Acid; Phenylurea Compounds; Protein Phosphatase 2; Proto-Oncogene Proteins c-akt; Pyrazines; Pyridines; Sorafenib; Treatment Outcome; Xenograft Model Antitumor Assays

2010
Novel hinge binder improves activity and pharmacokinetic properties of BRAF inhibitors.
    Journal of medicinal chemistry, 2010, Aug-12, Volume: 53, Issue:15

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Benzenesulfonates; Biological Availability; Crystallography, X-Ray; Female; Humans; Hydrogen Bonding; Imidazoles; Mice; Mice, Inbred BALB C; Models, Molecular; Neoplasm Transplantation; Niacinamide; Phenylurea Compounds; Protein Binding; Proto-Oncogene Proteins B-raf; Pyrazines; Pyridines; Sorafenib; Structure-Activity Relationship; Transplantation, Heterologous

2010
[Renal tolerance of targeted therapies].
    Bulletin du cancer, 2012, Mar-01, Volume: 99, Issue:3

    Topics: Antibodies, Monoclonal; Benzenesulfonates; Boronic Acids; Bortezomib; Erlotinib Hydrochloride; Glomerulonephritis; Humans; Indoles; Kidney; Kidney Tubules; Lapatinib; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Pyridines; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib

2012
Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-ĸB signaling, and synergizes with an ERK inhibitor.
    Cancer biology & therapy, 2012, Volume: 13, Issue:6

    Topics: Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-Associated Death Protein; Boronic Acids; Bortezomib; Caspase 3; Caspase 9; Cerebellar Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cytochromes c; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Humans; Medulloblastoma; NF-kappa B; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazines; Sorafenib; Tumor Cells, Cultured

2012
Chemosensitivity of conjunctival melanoma cell lines to target-specific chemotherapeutic agents.
    Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 2013, Volume: 251, Issue:1

    Topics: Antineoplastic Agents; Benzophenones; Boronic Acids; Bortezomib; Cell Proliferation; Conjunctival Neoplasms; Drug Screening Assays, Antitumor; Humans; Melanoma; Niacinamide; Phenylurea Compounds; Pyrazines; Ribonucleases; Sorafenib; Tumor Cells, Cultured

2013
Potent in vitro and in vivo activity of sorafenib in multiple myeloma: induction of cell death, CD138-downregulation and inhibition of migration through actin depolymerization.
    British journal of haematology, 2013, Volume: 161, Issue:1

    Topics: Actins; Aged; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Boronic Acids; Bortezomib; Chemokine CXCL12; Chemotaxis; Dose-Response Relationship, Drug; Down-Regulation; Female; Humans; Male; Mice; Mice, Inbred NOD; Mice, SCID; Middle Aged; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Multiple Myeloma; Neoplasm Proteins; Niacinamide; Phenylurea Compounds; Phosphorylation; Polymerization; Pyrazines; Sorafenib; Syndecan-1; Tumor Cells, Cultured; Tumor Microenvironment; Xenograft Model Antitumor Assays

2013
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2013, May-01, Volume: 926

    Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles

2013
Successful use of sorafenib after bortezomib failure in metastatic follicular thyroid cancer - a case report.
    Onkologie, 2013, Volume: 36, Issue:6

    Topics: Adenocarcinoma, Follicular; Adult; Boronic Acids; Bortezomib; Female; Humans; Kidney Neoplasms; Lung Neoplasms; Niacinamide; Phenylurea Compounds; Pyrazines; Sorafenib; Thyroid Neoplasms; Treatment Failure; Treatment Outcome

2013
Silencing of PKCη induces cycle arrest of EBV(+) B lymphoma cells by upregulating expression of p38-MAPK/TAp73/GADD45α and increases susceptibility to chemotherapeutic agents.
    Cancer letters, 2014, Aug-01, Volume: 350, Issue:1-2

    Topics: Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Burkitt Lymphoma; Cell Cycle Checkpoints; Cell Cycle Proteins; Cell Division; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p21; DNA-Binding Proteins; Drug Resistance, Neoplasm; Herpesvirus 4, Human; Humans; Membrane Potential, Mitochondrial; NF-kappa B; Niacinamide; Nuclear Proteins; p38 Mitogen-Activated Protein Kinases; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Protein Kinase C; Pyrazines; RNA Interference; RNA, Small Interfering; Sorafenib; Tumor Protein p73; Tumor Suppressor Proteins; Up-Regulation

2014
Evaluation of in vitro inhibitory potential of type-I interferons and different antiviral compounds on rabies virus replication.
    Vaccine, 2019, 08-02, Volume: 37, Issue:33

    Topics: Amides; Animals; Antiviral Agents; Cell Line, Tumor; Drug Combinations; Interferon Type I; Mice; Pyrazines; Rabies virus; Real-Time Polymerase Chain Reaction; Ribavirin; Sorafenib; Virus Replication

2019
Strong enhancement by IGF1-R antagonists of hepatocellular carcinoma cell migration inhibition by Sorafenib and/or vitamin K1.
    Cellular oncology (Dordrecht), 2018, Volume: 41, Issue:3

    Topics: Actin Cytoskeleton; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Cell Proliferation; Extracellular Signal-Regulated MAP Kinases; Humans; Imidazoles; Insulin-Like Growth Factor I; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Phosphorylation; Protein Kinase Inhibitors; Pyrazines; Pyrimidines; Pyrroles; Sorafenib; Vitamin K 1

2018
Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies.
    British journal of haematology, 2019, Volume: 187, Issue:4

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Cell Line, Tumor; Drug Screening Assays, Antitumor; fms-Like Tyrosine Kinase 3; Hematologic Neoplasms; Humans; Mutant Proteins; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-cbl; Proto-Oncogene Proteins c-kit; Pyrazines; Pyrazoles; Pyrroles; Sorafenib; Staurosporine; Triazines

2019
Effects of the multi-kinase inhibitor midostaurin in combination with chemotherapy in models of acute myeloid leukaemia.
    Journal of cellular and molecular medicine, 2020, Volume: 24, Issue:5

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Apoptosis; Benzimidazoles; Benzothiazoles; Cell Line, Tumor; Cell Proliferation; Drug Synergism; fms-Like Tyrosine Kinase 3; Gene Expression Regulation, Neoplastic; Humans; Leukemia, Myeloid, Acute; Mice; Mutation; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyrazines; Sorafenib; Staurosporine; Syk Kinase

2020
Clinical outcomes in patients with relapsed/refractory FLT3-mutated acute myeloid leukemia treated with gilteritinib who received prior midostaurin or sorafenib.
    Blood cancer journal, 2022, 05-30, Volume: 12, Issue:5

    Topics: Aniline Compounds; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Mutation; Protein Kinase Inhibitors; Pyrazines; Retrospective Studies; Sorafenib; Staurosporine

2022