pyrazines has been researched along with melphalan in 231 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 76 (32.90) | 29.6817 |
2010's | 155 (67.10) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Anderson, KC; Bailey, C; Chauhan, D; Fanourakis, G; Gu, X; Hideshima, T; Joseph, M; Libermann, TA; Mitsiades, CS; Mitsiades, N; Munshi, NC; Poulaki, V; Richardson, PG; Schlossman, R; Tai, YT | 1 |
Barlogie, B; Shaughnessy, J; Tricot, G; Zangari, M | 1 |
Adams, J; Altamirano, C; Berenson, JR; Borad, MJ; Frantzen, M; Friedman, JM; Ma, MH; Manyak, S; Mikail, A; Neeser, J; Parker, K; Roussos, E; Sjak-Shie, N; Vescio, RA; Wu, ZQ; Yang, HH | 1 |
Alsina, M; Djulbegovic, B; Durie, BG; Kumar, A; Loughran, T | 1 |
Berenson, JR; Schenkein, D; Vescio, R; Yang, HH | 1 |
Jagannath, S | 1 |
Dimopoulos, MA; Rahemtulla, A; Terpos, E | 1 |
Alsina, M; Beaupre, DM; Buzzeo, R; Dalton, WS; Enkemann, S; Lichtenheld, MG; Nimmanapalli, R | 1 |
Joshua, DE | 1 |
Adams, J; Berenson, JR; Jarutirasarn, SG; Lee, SP; Mapes, R; Morrison, B; Purner, M; Sadler, K; Schenkein, D; Swift, R; Vescio, RA; Wilson, J; Yang, HH | 1 |
De Raeve, H; Lambert, J; Rombouts, S; Schroyens, W; Van de Velde, A; Van de Voorde, K; Van Regenmortel, N | 1 |
Anderson, KC; Hideshima, T; Richardson, PG; Schlossman, R | 1 |
Coiteux, V; Facon, T; Leleu, X | 1 |
Kyle, RA; Vincent Rajkumar, S | 1 |
Atadja, P; Carvajal-Vergara, X; Gutiérrez, N; López-Pérez, R; Maiso, P; Mateo, G; Ocio, EM; Pandiella, A; San Miguel, JF | 1 |
Alegre, A; Bargay, J; Bladé, J; Carrera, D; de Arriba, F; de la Rubia, J; Díaz-Mediavilla, J; Esseltine, DL; Fuertes, M; García-Laraña, J; García-Sanz, R; Gutiérrez, NC; Hernández, JM; Hernández, MT; Lahuerta, JJ; Mateo, G; Mateos, MV; Oriol, A; Palomera, L; Prósper, F; Ribas, P; San Miguel, JF; Sureda, A; Terol, MJ; van de Velde, H | 1 |
Ambrosini, MT; Avonto, I; Boccadoro, M; Bringhen, S; Bruno, B; Cavallo, F; Falco, P; Falcone, A; Gay, F; Massaia, M; Musto, P; Palumbo, A; Rus, C; Scalzulli, PR | 1 |
Okamoto, S | 1 |
McKenna, KE; Morris, TC; Ramadan, KM | 1 |
Ambrosini, MT; Avonto, I; Benevolo, G; Boccadoro, M; Bringhen, S; Callea, V; Cangialosi, C; Caravita, T; Cavallo, F; Falco, P; Morabito, F; Musto, P; Palumbo, A; Pescosta, N; Pregno, P | 1 |
Boccadoro, M; Cavenagh, J; Dicato, M; Harousseau, JL; Ludwig, H; San Miguel, J; Sonneveld, P | 1 |
Anderson, KC; Barilà, D; Chauhan, D; DePinho, RA; Hideshima, T; Podar, K; Raab, MS; Raje, N; Sattler, M; Tai, YT; Tonon, G; Yasui, H; Zhang, J | 1 |
Iida, S | 3 |
Strobeck, M | 1 |
Anagnostopoulos, A; Bamias, A; Barmparousi, D; Dimopoulos, MA; Gika, D; Grapsa, I; Kastritis, E; Matsouka, C; Psimenou, E; Roussou, M | 1 |
Abouladze, M; Baudard, M; Dreano, M; Goldschmidt, H; Hose, D; Jourdan, M; Klein, B; Mahtouk, K; Moreaux, J; Rème, T; Robert, N; Romanelli, A; Rossi, JF; Vos, JD | 1 |
Alexanian, R; Delasalle, K; Giralt, S; Handy, B; Wang, M | 1 |
Hulin, C | 1 |
Baritaki, S; Berenson, JR; Bonavida, B; Campbell, RA; Chen, H; Gordon, M; Pang, S; Said, J; Sanchez, E; Shalitin, D; Steinberg, JA; Wang, C | 1 |
Alsayed, Y; Anaissie, E; Barlogie, B; Bolejack, V; Cottler-Fox, M; Crowley, J; Epstein, J; Gurley, J; Haessler, J; Hollmig, K; Jenkins, B; Mohiuddin, A; Petty, N; Pineda-Roman, M; Shaughnessy, JD; Steward, D; Sullivan, E; Tricot, G; van Rhee, F; Zangari, M | 1 |
Amiot, M; Anderson, KC; Chauhan, D; Gouill, SL; Harousseau, JL; Hideshima, T; Opferman, JT; Podar, K; Tai, YT; Zhang, J; Zorn, E | 1 |
Fassas, AB; Tricot, G | 1 |
Ganser, A; Peest, D | 1 |
Björkstrand, B; Gahrton, G | 1 |
Faiman, B | 1 |
Ishida, T | 2 |
Gotoh, A; Ohyashiki, K | 1 |
Baumann, P; Mandl-Weber, S; Oduncu, F; Schmidmaier, R | 2 |
DiPersio, JF; Fisher, NM; Peles, S; Tomasson, MH; Trivedi, R; Uy, GL; Vij, R; Zhang, QJ | 1 |
Alegre, A; Bargay, J; Bladé, J; Carrera, D; de Arriba, F; de la Rubia, J; Esseltine, DL; Fuertes, M; García-Laraña, J; Garcia-Sanchez, P; García-Sanz, R; Gutiérrez, NC; Hernández, JM; Hernández, MT; Lahuerta, JJ; Mateo, G; Mateos, MV; Oriol, A; Palomera, L; Prósper, F; Ribas, P; San Miguel, JF; Sureda, A; Terol, MJ; van de Velde, H | 1 |
López-Pérez, R; Montero, JC; Pandiella, A; San Miguel, JF | 1 |
Berenson, JR; Hilger, J; Lee, SP; Mapes, R; Morrison, B; Nassir, Y; Swift, R; Vescio, RA; Wilson, J; Yang, HH; Yellin, O | 1 |
Garderet, L; Gorin, NC; Isnard, F | 1 |
Belch, AR; Debes Marun, C; Kirshner, J; Martin, LD; Pilarski, LM; Reiman, T; Thulien, KJ | 1 |
Facon, T; Hulin, C; Moreau, P | 2 |
Biron, P; Ghesquières, H; Labidi, SI; Nicolas, EV; Sebban, C | 1 |
Abdulkadyrov, KM; Anderson, KC; Cakana, A; Dimopoulos, MA; Dmoszynska, A; Esseltine, DL; Jiang, B; Khuageva, NK; Kropff, M; Liu, K; Mateos, MV; Palumbo, A; Petrucci, MT; Richardson, PG; Samoilova, OS; San Miguel, JF; Schlag, R; Schots, R; Shpilberg, O; Spicka, I; van de Velde, H | 1 |
Durie, BG | 1 |
Anagnostopoulos, N; Christoulas, D; Croucher, P; Dimopoulos, MA; Eleftherakis-Papaiakovou, E; Heath, D; Kastritis, E; Roussou, M; Terpos, E; Tsionos, K | 1 |
Boccadoro, M; Bringhen, S; Falco, P; Gay, F; Magarotto, V; Palumbo, A | 1 |
Adachi, D; Hattori, N; Nakamaki, T; Nakashima, H; Saito, B; Tomoyasu, S | 1 |
Bladé, J; Rosiñol, L | 1 |
Asaoku, H; Katayama, Y; Kimura, A; Kuroda, Y; Matsui, H; Mizuno, M; Munemasa, S; Nakaju, N; Nishisaka, T; Ogawa, K; Okikawa, Y; Sakai, A; Tanaka, H; Tsuyama, N | 1 |
DiPersio, JF; Fisher, NM; Goyal, SD; Oza, AY; Stockerl-Goldstein, K; Tomasson, MH; Uy, GL; Vij, R | 1 |
Ambrus, JL; Islam, A | 1 |
Conti, AA; Dilaghi, B; Modesti, PA; Nozzoli, C | 1 |
Kami, M; Komatsu, T; Tsubokura, M | 1 |
Avvisati, G | 1 |
García-Bustínduy, M; Martín-Herrera, A; Noda-Cabrera, A; Rodríguez-Martín, M; Sáez-Rodríguez, M | 1 |
Basu, S; Cavenagh, J; Cook, M; Craddock, C; Foot, N; Hallam, S; Harding, S; Joel, S; Oakervee, H; Odeh, L; Popat, R; Singer, C; Williams, C | 1 |
Higa, GM; Saad, AA; Sharma, M | 1 |
Abaya, CD; Berenson, JR; Cartmell, A; Duvivier, H; Eades, B; Flam, MS; Hilger, J; Nassir, Y; Patel, R; Swift, RA; Woytowitz, D; Yellin, O | 1 |
Caravita, T; de Fabritiis, P; Del Poeta, G; Fratoni, S; Santeusanio, G; Siniscalchi, A | 1 |
Geffray, L | 1 |
Berenson, JR | 1 |
Anderson, KC; Breitkreutz, I; Podar, K; Raab, MS; Richardson, PG | 1 |
Gu, B; Liu, Y; Qiu, H; Ruan, C; Shi, X; Sun, A; Tang, X; Wu, D; Xue, S; Zhou, H | 1 |
Anderson, RD; Chao, NJ; Chute, JP; Davis, PH; de Castro, CM; Diehl, LF; Gasparetto, C; Gockerman, JP; Horwitz, ME; Keogh, G; Long, GD; Moore, JO; Neuwirth, R; Rizzieri, D; Sullivan, KM; Sutton, LM | 1 |
Alexeeva, J; Cakana, A; Delforge, M; Deraedt, W; Dimopoulos, MA; Kastritis, E; Khuageva, NK; Kropff, M; Liu, K; Masszi, T; Mateos, MV; Petrucci, MT; Richardson, PG; San Miguel, JF; Schlag, R; Schots, R; Shpilberg, O; van de Velde, H | 1 |
Araujo, C; Attal, M; Avet-Loiseau, H; Caillot, D; Danho, C; Dib, M; Dorvaux, V; Fruchart, C; Garderet, L; Harousseau, JL; Hulin, C; Huynh, A; Kolb, B; Lenain, P; Marit, G; Mary, JY; Mathiot, C; Moreau, P; Pégourié, B; Randriamalala, E; Roussel, M; Royer, B; Stoppa, AM | 1 |
Attal, M; Bourin, P; Laroche, M; Lemaire, O | 1 |
Kanda, Y | 1 |
Ozaki, S | 1 |
Berenson, JR; Campbell, RA; Chen, H; Li, ZW; Sanchez, E; Shalitin, D; Steinberg, J | 1 |
Baldini, L; Boccadoro, M; Bringhen, S; Callea, V; Casulli, AF; Catalano, L; Cavo, M; Ciolli, S; Di Raimondo, F; Galimberti, S; Gentile, M; Mannina, D; Mele, G; Morabito, F; Musto, P; Offidani, M; Palmieri, S; Palumbo, A; Petrucci, MT; Pinotti, G; Piro, E; Tosi, P | 1 |
Alsina, M; Beg, AA; Boulware, D; Chen, DT; Dalton, WS; Hazlehurst, LA; Mathews, L; Oliveira, V; Shain, KH; Villagra, A; Wang, X; Yarde, DN | 1 |
Berenson, JR; Bonavida, B; Chen, H; Li, M; Li, ZW; Sanchez, E; Shen, J; Steinberg, JA; Wang, C | 1 |
Cherem, L; Kahan, BD; Kaposztas, Z; Katz, SM; Van Buren, CT | 1 |
Chung, JS; Do, YR; Eom, HS; Jin, JY; Kim, CS; Kim, HJ; Kim, HY; Kim, K; Kim, YK; Lee, DS; Lee, JH; Oh, SJ; Seong, CM; Suh, C | 1 |
Azaïs, I; Brault, R; Debiais, F | 1 |
Benevolo, G; Boccadoro, M; Bringhen, S; Caltagirone, S; Corradini, P; Crippa, C; Falco, P; Gay, F; Giuliani, N; Guglielmelli, T; Liberati, AM; Montefusco, V; Musto, P; Offidani, M; Palumbo, A; Patriarca, F; Pescosta, N; Petrucci, MT; Rossi, G; Rossini, F | 1 |
Arvanitis, A; Caulder, E; Combs, AP; Favata, M; Fridman, JS; Kelley, JA; Li, J; Newton, R; Rogers, JD; Scherle, PA; Solomon, KA; Sparks, RB; Thomas, B; Vaddi, K; Wen, X | 1 |
Bauer, F; Dasanu, CA; Reale, MA | 1 |
Lokhorst, HM; Minnema, MC; van de Donk, NW; van der Spek, E | 1 |
Abdulkadyrov, KM; Cakana, A; Dimopoulos, MA; Dmoszynska, A; Esseltine, DL; Jiang, B; Khuageva, NK; Kropff, M; Liu, K; Mateos, MV; Palumbo, A; Petrucci, MT; Richardson, PG; Samoilova, OS; San Miguel, JF; Schlag, R; Schots, R; Shpilberg, O; Spicka, I; van de Velde, H | 1 |
Alexanian, R; Delasalle, K; Giralt, S; Wang, M | 1 |
Lonial, S | 1 |
Bocchia, M; Chitarrelli, I; Defina, M; Fabbri, A; Gozzetti, A; Lauria, F; Marchini, E | 1 |
Cakana, A; Cavo, M; Deraedt, W; Dimopoulos, MA; Esseltine, DL; Golenkov, A; Harousseau, JL; Kentos, A; Komarnicki, M; Kropff, M; Liu, K; Mateos, MV; Palumbo, A; Richardson, PG; San Miguel, JF; Schlag, R; Shpilberg, O; van de Velde, H | 1 |
Attal, M; Avet-Loiseau, H; Benboubker, L; Caillot, D; Campion, L; Facon, T; Guerin-Charbonnel, C; Harousseau, JL; Hulin, C; Kolb, B; Leleu, X; Macro, M; Marit, G; Mathiot, C; Minvielle, S; Moreau, P; Roussel, M; Stoppa, AM; Voillat, L; Wetterwald, M | 1 |
Abdul-Jaleel, M; Candelaria-Quintana, D; Libby, E; Moualla, H; Rabinowitz, I | 1 |
Burbury, K; Harrison, SJ; Joyce, T; Peinert, S; Prince, HM; Ritchie, D; Seymour, JF; Stokes, K; Thompson, PA; Wolf, M | 1 |
Bargay, J; Bello, JL; Bengoechea, E; Bladé, J; Cibeira, MT; de Arriba, F; de Paz, R; García-Laraña, J; García-Sanz, R; González, Y; Gutiérrez, N; Hernández, JM; Lahuerta, JJ; Martín, A; Martín-Mateos, ML; Martínez-López, J; Mateos, MV; Mediavilla, JD; Miguel, JF; Montalbán, MA; Oriol, A; Paiva, B; Palomera, L; Peñalver, FJ; Ramos, ML; Ribera, JM; Sureda, A; Teruel, AI; Vidriales, MB | 1 |
Rajkumar, SV | 2 |
Flowers, CR; Harvey, RD; Heffner, LT; Kaufman, J; Khoury, HJ; Langston, AA; Lechowicz, MJ; Lonial, S; McMillan, S; Nooka, A; Renfroe, H; Tighiouart, M; Torre, C; Waller, EK | 1 |
Benevolo, G; Boccadoro, M; Bringhen, S; Callea, V; Cangialosi, C; Cavalli, M; Cavo, M; De Rosa, L; Evangelista, A; Falcone, AP; Gaidano, G; Gentili, S; Genuardi, M; Grasso, M; Guglielmelli, T; Larocca, A; Levi, A; Liberati, AM; Musto, P; Nozzoli, C; Palumbo, A; Patriarca, F; Ria, R; Rizzo, V; Rossi, D | 1 |
Cakana, A; Deraedt, W; Dimopoulos, MA; Esseltine, DL; Khuageva, NK; Kropff, M; Liu, K; Mateos, MV; Palumbo, A; Richardson, PG; San Miguel, JF; Schlag, R; Shpilberg, O; Spicka, I; Van De Velde, H; Wu, KL | 1 |
Asmar, L; Beveridge, R; Boehm, KA; Greenspan, A; Kannarkat, GT; Mandanas, RA; Rifkin, RM; Schwerkoske, JF; Stephenson, JJ; Zhan, F | 1 |
Baldini, L; Benevolo, G; Boccadoro, M; Bringhen, S; Callea, V; Cavalli, M; Ciccone, G; Falcone, AP; Gottardi, D; Grasso, M; Guglielmelli, T; Larocca, A; Leonardi, G; Montefusco, V; Morabito, F; Musto, P; Nozzoli, C; Offidani, M; Palumbo, A; Patriarca, F; Petrucci, MT; Ria, R; Rizzo, M; Rossi, D | 1 |
Anderson, KC; Barlogie, B; Bladé, J; Cavo, M; Chanan-Khan, A; Comenzo, RL; Dimopoulos, MA; Durie, BG; Fermand, JP; Giralt, S; Harousseau, JL; Jagannath, S; Leung, N; Ludwig, H; Niesvizky, R; Palumbo, A; Rajkumar, SV; Richardson, PG; San Miguel, J; Sezer, O; Sonneveld, P; Terpos, E; Tosi, P | 1 |
Palumbo, A | 1 |
Djulbegovic, B; Hozo, I; Kumar, A; Wheatley, K | 1 |
Cornell, LD; Fidler, ME; Nasr, SH; Qian, Q; Sethi, S | 1 |
Mateos, MV; San-Miguel, J | 1 |
Schots, R | 1 |
Cakana, A; Delforge, M; Deraedt, W; Dimopoulos, MA; Esseltine, DL; Goldschmidt, H; Khuageva, NK; Kropff, M; Liu, K; Magen-Nativ, H; Mateos, MV; Petrucci, MT; Ricci, DS; Richardson, PG; Samoilova, OS; San Miguel, JF; Schlag, R; Shpilberg, O; Spicka, I; Terpos, E; van de Velde, H | 1 |
Anderson, K; Cakana, A; Deraedt, W; Dimopoulos, M; Esseltine, DL; Hou, J; Khuageva, N; Kropff, M; Liu, K; Mateos, MV; Petrucci, MT; Richardson, P; Robak, T; Rossiev, V; San Miguel, JF; Schlag, R; Shpilberg, O; van de Velde, H; Vekemans, MC | 1 |
Adachi, K; Endoh, A; Nakamura, R; Oda, Y; Ooi, S; Urushidani, Y | 1 |
Arfons, LM; Ataergin, SA; Barr, PM; Cooper, BW; Creger, RJ; Fu, P; Gerson, SL; Kaplan, D; Kaye, NM; Kindwall-Keller, TL; Laughlin, MJ; Lazarus, HM; Liu, F; Sommers, SR | 1 |
Alvarez Fernández, GM; de Alarcón Jiménez, RM; García Hernández, MA; Jimeno Griñó, C; Molina Núñez, M; Navarro Parreño, MJ; Roca Meroño, S; Zarco Pedrinaci, E | 1 |
Azab, AK; Bahlis, NJ; Boise, LH; Brentnall, M; Duggan, P; Ghobrial, IM; Gratton, K; Klimowicz, AC; Lin, C; Mansoor, A; Neri, P; Ren, L; Stewart, DA; Tassone, P | 1 |
Abraham, J; Bridoux, F; Delbès, S; Desport, E; Fermand, JP; Jaccard, A; Lacotte-Thierry, L; Moumas, E; Touchard, G | 1 |
Kyle, RA; Steensma, DP | 1 |
Attal, M; Facon, T; Harousseau, JL; Moreau, P; Roussel, M | 1 |
Abraham, J; Bridoux, F; Debiais, C; Delbès, S; Desport, E; Fermand, JP; Hanf, W; Jaccard, A; Lacotte-Thierry, L; Moumas, E; Touchard, G | 1 |
Brugnatelli, S; Foli, A; Invernizzi, R; Lavatelli, F; Merlini, G; Milani, P; Nuvolone, M; Obici, L; Palladini, G; Russo, P | 1 |
Balleisen, S; Bruns, I; Fenk, R; Haas, R; Kobbe, G; Kondakci, M; Liese, V; Neubauer, F; Saure, C; Schröder, T | 1 |
Basak, GW; Jaksic, O; Koristek, Z; Labar, B; Masszi, T; Mayer, J; Mikala, G; Wiktor-Jedrzejczak, W | 1 |
Henderson, RA; McGhee, CN; Patel, D; Pradhan, MA; Vincent, AL | 1 |
Burns, CJ; Khong, T; Monaghan, KA; Spencer, A | 1 |
Bello, C; Comenzo, RL; Hassoun, H; Hoover, E; Landau, H; Nimer, SD; Riedel, ER | 1 |
Andrea, NT; Quillen, K; Sanchorawala, V; Seldin, DC; Sloan, JM | 1 |
Falk, RH | 1 |
Bashir, Q; Bassett, RL; Champlin, RE; Giralt, SA; Hosing, CM; Khan, H; Orlowski, RZ; Parmar, S; Popat, UR; Qazilbash, MH; Shah, JJ; Shah, N; Sharma, M; Thall, PF; Wang, M | 1 |
Bousquet, A; Join-Lambert, O; Malfuson, JV; Martinaud, C; Soler, C | 1 |
Kuwabara, S | 1 |
Baldini, L; Benevolo, G; Boccadoro, M; Bringhen, S; Cascavilla, N; Cavo, M; Di Raimondo, F; Gentile, M; Grasso, M; Guglielmelli, T; Majolino, I; Marasca, R; Mazzone, C; Montefusco, V; Morabito, F; Musolino, C; Musto, P; Nozzoli, C; Offidani, M; Palumbo, A; Patriarca, F; Petrucci, MT; Ria, R; Rossi, D; Vincelli, I | 1 |
D'Arena, G; Di Renzo, N; Falcone, A; Ferrara, F; Guariglia, R; Mansueto, G; Martorelli, MC; Mastrullo, L; Musto, P; Onofrillo, D; Pagano, L; Palumbo, A; Pietrantuono, G; Semenzato, G; Specchia, G; Valentini, CG; Venditti, A; Villani, O | 1 |
Bryant, J; Clegg, AJ; Cooper, K; Picot, J | 1 |
Bridoux, F; Delbes, S; Desport, E; Fermand, JP; Jaccard, A; Pourreau, F; Puyade, M; Sirac, C; Touchard, G | 1 |
Attal, M; Avet-Loiseau, H; Bourin, P; Cordelier, P; Corre, J; Espagnolle, N; Facon, T; Fournié, JJ; Gadelorge, M; Hébraud, B; Huynh, A; Klein, B; Labat, E; Moreau, P; Roussel, M | 1 |
Pan, XJ; Xiao, W; Yang, ZH; Zheng, CY; Zhou, SY; Zhu, MX | 1 |
Bertsch, U; Goldschmidt, H; Hose, D; Schmitt, S | 1 |
Andersen, NF; Andréasson, B; Billström, R; Carlson, K; Carlsson, MS; Flogegård, M; Forsberg, K; Gimsing, P; Gulbrandsen, N; Hjertner, Ø; Hjorth, M; Holmberg, E; Karlsson, T; Knudsen, LM; Linder, O; Nahi, H; Othzén, A; Pedersen, PT; Swedin, A | 1 |
Knop, S | 1 |
Alekshun, TJ; Alsina, M; Anasetti, C; Baz, R; Chen, DT; Dalton, W; Fernandez, HF; Fulp, W; Han, G; Kharfan-Dabaja, MA; Kim, J; Nishihori, T; Ochoa-Bayona, JL; Oliveira, V; Perez, L; Pidala, J; Raychaudhuri, J; Shain, K; Sullivan, DM; Yarde, DN | 1 |
Cakana, A; Delforge, M; Dhawan, R; Esseltine, DL; Meunier, J; Regnault, A; Richardson, PG; Robinson, D; San Miguel, JF; van de Velde, H | 1 |
Domján, G; Gadó, K | 1 |
Garcia-Sanz, R; Mateos, MV; Ocio, E; San Miguel, JF | 1 |
Bo, J; Gao, C; Huang, W; Kang, W; Li, H; Li, J; Yu, L; Zhao, Y; Zhou, D | 1 |
Chigira, N; Ichikawa, K; Imai, H; Komatsu, N; Noguchi, M; Sawada, T; Sekiguchi, Y; Shirane, S; Sugimoto, K; Wakabayashi, M | 1 |
Charliński, G; Jedrzejczak, WW; Wiater, E | 1 |
Goulston, C; Hanson, KE; Kim, JH; Lampas, M; Sanders, S; Tricot, G; Zangari, M | 1 |
Abidi, MH; Abrams, J; Al-Kadhimi, Z; Ayash, L; Deol, A; Gul, Z; Lum, L; Mellon-Reppen, S; Ratanatharathorn, V; Uberti, J; Ventimiglia, M; Zonder, J | 1 |
Dimopoulos, MA; Gkotzamanidou, M; Kastritis, E; Matsouka, C; Mparmparoussi, D; Nikitas, N; Psimenou, E; Roussou, M; Spyropoulou-Vlachou, M; Terpos, E | 1 |
Ishiyama, T; Jinguu, A; Kikuchi, J; Matsumoto, H; Suzuki, T; Yamakawa, M | 1 |
Bashir, Q; Bayraktar, UD; Champlin, RE; Ciurea, SO; Qazilbash, M | 1 |
Arbeille, B; Croué, A; Ifrah, N; Levaltier, X; Marchand, A; Martin, L | 1 |
Suzuki, K | 2 |
Harousseau, JL | 1 |
Bello, C; Comenzo, RL; Flombaum, C; Giralt, S; Hassoun, H; Hoover, E; Landau, H; Liu, J; Maurer, M; Riedel, E; Rosenzweig, MA | 1 |
Synhaeve, NE; Tijssen, CC; van der Heul, C | 1 |
Cavenagh, J; Joel, S; Maharaj, L; Oakervee, H; Popat, R | 1 |
Boccadoro, M; Bringhen, S; Foà, R; Gentilini, F; Grammatico, S; Larocca, A; Levi, A; Palumbo, A; Petrucci, MT; Russo, S; Scotti, S; Siniscalchi, A | 1 |
Giralt, S; Landau, H; Rosenzweig, M | 1 |
Burbury, K; Doo, NW; Harrison, SJ; Joyce, T; Prince, HM; Ritchie, D; Seymour, JF; Stokes, K; Thompson, PA; Wolf, M | 1 |
Miwa, A | 1 |
Cavalli, M; Chiarenza, A; Consoli, U; Conticello, C; Coppolino, F; Di Raimondo, F; Forte, S; Palumbo, GA; Romano, A; Uccello, G; Vetro, C | 1 |
Gertz, MA; Hayman, SR; Sher, T | 1 |
Hildebrandt, GC; Panu, LD; Shahan, JL | 1 |
Abdulkadyrov, KM; Anderson, KC; Cakana, A; Delforge, M; Deraedt, W; Dimopoulos, MA; Dmoszynska, A; Esseltine, DL; Jiang, B; Khuageva, NK; Kropff, M; Liu, K; Mateos, MV; Palumbo, A; Petrucci, MT; Richardson, PG; Samoilova, OS; San Miguel, JF; Schlag, R; Shpilberg, O; Spicka, I; van de Velde, H | 1 |
Ba-Mancini, A; Cakana, A; Chen, K; Corzo, D; Dhawan, R; Duh, MS; Garrison, LP; Huang, H; Korves, C; Shi, H; van de Velde, H; Wang, ST | 1 |
Lonial, S; Miguel, JF | 1 |
Mina, R; Palumbo, A | 1 |
Collet, P; Marotte, H; Nizeica, V | 1 |
Li, J; Zhou, DB | 1 |
Davies, FE; Fryer, RA; Graham, TJ; Morgan, GJ; Robinson, SP; Smith, EM; Walker-Samuel, S | 1 |
Alsina, M; Anasetti, C; Baz, R; Jim, HS; Kim, J; Nishihori, T; Ochoa-Bayona, JL; Pidala, J; Shain, K; Sullivan, D | 1 |
Ando, K; Hotta, T; Iida, S; Ishii, M; Matsue, K; Matsumoto, M; Mukai, HY; Ogawa, Y; Ogura, M; Ohashi, K; Sakai, A; Suzuki, K; Terui, Y; Tobinai, K | 1 |
Kim, JA; Kwak, JY; Lee, BH; Min, CK; Shin, SH; Yhim, HY | 1 |
Akaogi, T; Fuchida, S; Hatsuse, M; Horiike, S; Iwai, T; Kamitsuji, Y; Kaneko, H; Kawata-Iida, E; Kobayashi, T; Kobayashi, Y; Kuroda, J; Matsumoto, Y; Murakami, S; Nakao, M; Okano, A; Shimazaki, C; Shimizu, D; Takahashi, R; Taniwaki, M; Tsutsumi, Y; Uchiyama, H; Uoshima, N | 1 |
Aoki, K; Arima, H; Imai, H; Ishikawa, T; Kato, A; Matsushita, A; Mori, M; Nagano, S; Ono, Y; Tabata, S; Takahashi, T; Takiuchi, Y; Yanagita, S | 1 |
Bernasconi, P; Cazzola, M; Cocito, F; Corso, A; Mangiacavalli, S; Pochintesta, L; Pompa, A | 1 |
Caballero, D; Caballero-Velázquez, T; Castilla-Llorente, C; Encinas, C; Heras, I; López-Corral, L; Martino, R; Pérez-Simón, JA; Rosiñol, L; Sampol, A; San Miguel, J; Serrano, D | 1 |
Boccadoro, M; Cavallo, F; Corradini, P; Crippa, C; Ferrari, S; Gay, F; Giuliani, N; Guglielmelli, T; Liberati, AM; Magarotto, V; Montefusco, V; Offidani, M; Oliva, S; Omedé, P; Palumbo, A; Passera, R; Patriarca, F; Pescosta, N; Petrucci, MT; Pezzatti, S; Pietrantuono, G | 1 |
Adam, Z; Adamova, D; Bacovsky, J; Gregora, E; Gumulec, J; Hajek, R; Jarkovsky, J; Maisnar, V; Melicharova, H; Minarik, J; Pavlicek, P; Pika, T; Plonkova, H; Pour, L; Radocha, J; Sandecka, V; Scudla, V; Spicka, I; Starostka, D; Straub, J; Walterova, L; Wrobel, M | 1 |
Akashi, K; Choi, I; Ito, Y; Iwasaki, H; Kamimura, T; Kato, K; Miyamoto, T; Muta, T; Shiratsuchi, M; Takamatsu, Y; Takashima, S; Takenaka, K; Teshima, T; Yoshimoto, G | 1 |
El Azeeim, HA; El Husseiny, NM; Kasem, N; Mattar, MW | 1 |
Bakhous, A; Waheed, S; Zhu, H | 1 |
Morgan, GJ | 1 |
Cavenagh, J; Ingram, W; Quinn, J; Smith, D; Stevens, J; Yong, K | 1 |
Drach, J; Drach-Schauer, B; Eder, S; Lamm, W | 1 |
Bačovský, J; Látalová, P; Lochman, P; Metelka, R; Minařík, J; Pika, T; Ščudla, V; Vymětal, J; Zapletalová, J | 1 |
Aróstegui, JI; Bladé, J; Cibeira, MT; Elena, M; Fernández de Larrea, C; Filella, X; Pedrosa, F; Rosiñol, L; Tovar, N; Yagüe, J | 1 |
Beksac, M; Boccadoro, M; Bringhen, S; Catalano, L; Cavalli, M; Cavo, M; Cerrato, C; Gentile, M; Gimsing, P; Gottardi, D; Isabel Turel, A; José Lahuerta, J; Juliusson, G; Larocca, A; Magarotto, V; Marina Liberati, A; Mazzone, C; Morabito, F; Musto, P; Offidani, M; Omedè, P; Oriol, A; Palumbo, A; Passera, R; Rossi, D; Rosso, S; San Miguel, J; Schaafsma, M; Sonneveld, P; Victoria Mateos, M; Waage, A; Wijermans, P; Zambello, R; Zweegman, S | 1 |
Hahn, T; McCarthy, PL | 1 |
Munemoto, S; Murata, R; Nakajima, K; Nakao, S; Takamatsu, H; Terasaki, Y | 1 |
Furukawa, Y; Hatano, K; Kikuchi, J; Nagai, T; Ozawa, K; Sripayap, P | 1 |
Allen, MS; Armitage, JO; Bierman, PJ; Bociek, RG; Loberiza, FR; Vose, JM; William, BM | 1 |
Benevolo, G; Boccadoro, M; Bringhen, S; Cavo, M; Di Raimondo, F; Falcone, AP; Franceschini, L; Gaidano, G; Gottardi, D; Grasso, M; Guglielmelli, T; Larocca, A; Levi, A; Magarotto, V; Marasca, R; Mina, R; Montefusco, V; Morabito, F; Musto, P; Nozzoli, C; Offidani, M; Omedé, P; Palumbo, A; Passera, R; Patriarca, F; Petrucci, MT; Ria, R; Rossi, D; Vincelli, ID; Zambello, R | 1 |
Bryant, J; Clegg, A; Cooper, K; Picot, J | 1 |
Demirayak, Ş; Yurttaş, L | 1 |
Anderson, KC; Chauhan, D; Coffman, RL; Das, DS; Ray, A; Richardson, P; Tian, Z | 1 |
Fuchida, S; Hino, M; Ishii, K; Kanakura, Y; Kaneko, H; Kobayashi, M; Kosugi, S; Kuroda, J; Matsumura, I; Nomura, S; Ohta, K; Shibayama, H; Shimazaki, C; Shimura, Y; Takaori-Kondo, A; Tanaka, H; Taniwaki, M; Tsudo, M; Uoshima, N | 1 |
Abar, F; Dibb, J; Dibb, W; Frires, R; Heitner, SB; Kovacsovics, T; Maziarz, RT; Meyers, G; Perez-Avraham, G; Scott, EC; Smith, SD; Stentz, A | 1 |
Corchete, LA; Garayoa, M; García-Sanz, R; Gutiérrez, NC; Krzeminski, P; Ocio, EM; Paíno, T; Paiva, B; Redondo, A; San-Miguel, JF; San-Segundo, L; Sarasquete, ME | 1 |
Chen, CY; Chen, YC; Chou, SJ; Chou, WC; Hou, HA; Huang, SY; Lin, CW; Lin, HH; Lu, HY; Tang, JL; Tien, HF; Tsay, W; Wu, SJ; Yao, M | 1 |
Anagnostopoulos, A; Christoforidou, A; Christoulas, D; Delimpasi, S; Dimopoulos, MA; Gastari, V; Giannakoulas, N; Giannopoulou, E; Hadjiaggelidou, C; Kastritis, E; Katodritou, E; Kelaidi, C; Konstantinidou, P; Kotsopoulou, M; Kouraklis, A; Kyrtsonis, MC; Papadaki, S; Papadopoulou, A; Polychronidou, G; Pouli, A; Stefanoudaki, E; Symeonidis, AS; Terpos, E; Verrou, E; Viniou, NA; Zervas, K | 1 |
Boccadoro, M; Bringhen, S; Desai, A; Di Raimondo, F; Esseltine, DL; García-Sanz, R; Lahuerta, JJ; Larocca, A; Londhe, A; Mateos, MV; Oriol, A; Palumbo, A; Richardson, PG; San Miguel, JF; van de Velde, H | 1 |
Abildgaard, N; Hansen, CT; Nielsen, LC; Pedersen, PT | 1 |
Bladé, J; Grosicki, S; Laubach, J; Maloisel, F; Mateos, MV; Min, CK; Orlowski, RZ; Palumbo, A; Polo Zarzuela, M; Prasad, SV; Puchalski, T; Qin, X; Reddy, M; Robak, T; San-Miguel, J; Shpilberg, O; Spencer, A; Tee Goh, Y; Uhlar, C; van de Velde, H; Xie, H | 1 |
Abe, Y; Hamano, A; Hattori, Y; Miyazaki, K; Nakagawa, Y; Sekine, R; Shingaki, S; Suzuki, K; Tsukada, N | 1 |
Ashcroft, AJ; Bird, JM; Brown, JM; Cairns, DA; Cavenagh, J; Cavet, J; Chalmers, A; Cook, G; Drayson, MT; Fletcher, M; Hunter, H; Morris, TC; O'Connor, S; Parrish, C; Snowden, JA; Williams, C; Yong, K | 1 |
Hu, H; Jia, Y; Peng, J; Wang, L; Xu, H | 1 |
Borchmann, P; Engert, A; Monsef, I; Rancea, M; Skoetz, N; Will, A | 1 |
Cheng, J; Lamy, T; Loughran, TP; Malysz, J; Ochmann, M; Talamo, G | 1 |
Basset, M; Foli, A; Lavatelli, F; Merlini, G; Milani, P; Nuvolone, M; Obici, L; Palladini, G; Perlini, S; Vidus Rosin, M | 1 |
Abboud, CN; Cashen, AF; DiPersio, JF; Fiala, MA; Fletcher, T; Stockerl-Goldstein, KE; Uy, GL; Vij, R; Wang, TF; Westervelt, P; Wu, N | 1 |
Bargay, J; Bello, JL; Bengoechea, E; Bladé, J; de Arriba, F; González, Y; Granell, M; Hernández, JM; Lahuerta, JJ; López de la Guía, A; López, J; Martín-Mateos, ML; Martínez, R; Martínez-López, J; Mateos, MV; Montalbán, MA; Oriol, A; Paiva, B; Palomera, L; Peñalver, FJ; Pérez, M; San-Miguel, JF; Teruel, AI | 1 |
Huang, L; Liu, W; Liu, Z; Luo, L; Mao, X; Meng, F; Qin, S; Sun, H; Zeng, W; Zheng, M; Zhou, J | 1 |
Kim, J; Kim, M; Kim, YJ; Lee, SE; Lee, SH; Min, CK | 1 |
Dakhil, C; Haideri, N; Kumar, AK; Teeka Satyan, M | 1 |
Choi, JO; Jeon, ES; Kim, HJ; Kim, JS; Kim, K; Kim, SJ; Lee, GY; Lee, JE; Lee, JY; Lee, SY; Lim, SH; Min, JH | 1 |
Nakaseko, C | 1 |
Tsurumi, H | 1 |
Bartlett, DL; Kim, SY; Kwon, YT; Lee, YJ; Song, X; Tang, D; Zhang, L | 1 |
Gertz, MA | 1 |
Abenhardt, W; Aldaoud, A; Grugel, R; Hartmann, H; Knauf, W; Marschner, N; Münz, M; Nusch, A | 1 |
Anderson, KC; Dimopoulos, MA; Dow, E; Elliott, J; Mateos, MV; Niculescu, L; Palumbo, A; Richardson, PG; San Miguel, JF; Shi, H; van de Velde, H | 1 |
Chung, JS; Lee, GW; Lee, IS; Lee, JH; Lee, JJ; Lee, SM; Shin, DY; Song, IC; Song, MK | 1 |
Chen, Z; Hu, S; Rich, A; Tang, G; Wang, W | 1 |
Houghton, PJ; Kang, M; Kurmashev, D; Kurmasheva, RT; Reynolds, CP; Smith, MA; Wu, J | 1 |
52 review(s) available for pyrazines and melphalan
Article | Year |
---|---|
High-dose therapy and immunomodulatory drugs in multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Gene Expression Profiling; Humans; Interferons; Lenalidomide; Melphalan; Multiple Myeloma; Protease Inhibitors; Pyrazines; Stem Cell Transplantation; Thalidomide | 2002 |
Management of multiple myeloma: a systematic review and critical appraisal of published studies.
Topics: Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Bone Marrow Purging; Bone Marrow Transplantation; Boronic Acids; Bortezomib; Diphosphonates; Drug Administration Schedule; Epoetin Alfa; Erythropoietin; Hematinics; Hematopoietic Stem Cell Transplantation; Humans; Melphalan; Multiple Myeloma; Neoplasm Staging; Pyrazines; Randomized Controlled Trials as Topic; Recombinant Proteins; Salvage Therapy; Survival Analysis; Time Factors; Transplantation Conditioning; Transplantation, Autologous; Transplantation, Homologous; Treatment Outcome | 2003 |
Treatment of myeloma in patients not eligible for transplantation.
Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Melphalan; Multiple Myeloma; Pyrazines; Salvage Therapy; Thalidomide | 2005 |
Current treatment options for myeloma.
Topics: Age Factors; Algorithms; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Bone Density Conservation Agents; Boronic Acids; Bortezomib; Combined Modality Therapy; Diphosphonates; Doxorubicin; Humans; Melphalan; Multiple Myeloma; Osteolysis; Prednisolone; Pyrazines; Randomized Controlled Trials as Topic; Recurrence; Stem Cell Transplantation; Survival Analysis; Thalidomide; Transplantation, Autologous; Vincristine | 2005 |
New treatments for multiple myeloma.
Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Arsenic Trioxide; Arsenicals; Boronic Acids; Bortezomib; Clinical Trials as Topic; Dexamethasone; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Oxides; Pyrazines; Thalidomide | 2005 |
[Prognostic factors and new treatments of multiple myeloma].
Topics: Adrenal Cortex Hormones; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prognosis; Pyrazines; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous | 2006 |
Treatment of multiple myeloma: an emphasis on new developments.
Topics: Angiogenesis Inhibitors; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Boronic Acids; Bortezomib; Dexamethasone; Humans; Immunosuppressive Agents; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Protease Inhibitors; Pyrazines; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous | 2006 |
[Recent progress in diagnosis of and therapy for multiple myeloma].
Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Drug Therapy, Combination; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisolone; Pyrazines; Thalidomide | 2006 |
Management of multiple myeloma with bortezomib: experts review the data and debate the issues.
Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Doxorubicin; Drug Administration Schedule; Hemoglobins; Humans; Melphalan; Multiple Myeloma; Neoplasm Recurrence, Local; Pyrazines; Quality of Life; Thalidomide | 2006 |
[Recent progress in the treatment of multiple myeloma].
Topics: Age Factors; Antineoplastic Agents, Alkylating; Boronic Acids; Bortezomib; Diphosphonates; Drug Design; Football; Humans; Immunosuppressive Agents; Melphalan; Multiple Myeloma; Prednisolone; Pyrazines; Randomized Controlled Trials as Topic; Reference Standards; Thalidomide | 2007 |
[New treatment of multiple myeloma].
Topics: Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Immunosuppressive Agents; Lenalidomide; Melphalan; Multiple Myeloma; Protease Inhibitors; Pyrazines; Thalidomide | 2007 |
Tandem transplants in the treatment of multiple myeloma. Pro.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Combined Modality Therapy; Dexamethasone; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Remission Induction; Reoperation; Survival Rate; Thalidomide; Transplantation Conditioning; Transplantation, Autologous; Treatment Outcome | 2004 |
[Therapy of multiple myeloma: indications and options].
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Diphosphonates; Dose-Response Relationship, Drug; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Neoplasm Staging; Prednisone; Pyrazines; Remission Induction; Thalidomide; Tumor Burden | 2007 |
High-dose treatment with autologous stem cell transplantation in multiple myeloma: past, present, and future.
Topics: Adolescent; Adult; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Dose-Response Relationship, Drug; Feasibility Studies; Forecasting; Hematopoietic Stem Cell Transplantation; Humans; Life Tables; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Randomized Controlled Trials as Topic; Registries; Survival Analysis; Transplantation Conditioning; Transplantation, Autologous; Treatment Outcome | 2007 |
Clinical updates and nursing considerations for patients with multiple myeloma.
Topics: Anti-Inflammatory Agents; Antineoplastic Agents; Boronic Acids; Bortezomib; Diagnosis, Differential; Disease Progression; Doxorubicin; Drug Administration Schedule; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Neoplasm Staging; Nurse's Role; Oncology Nursing; Patient Compliance; Patient Education as Topic; Practice Guidelines as Topic; Prednisone; Pyrazines; Quality of Life; Survival Rate; Thalidomide; Treatment Outcome | 2007 |
[Chemotherapy for multiple myeloma].
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Doxorubicin; Drug Administration Schedule; Humans; Melphalan; Meta-Analysis as Topic; Multiple Myeloma; Prednisolone; Pulse Therapy, Drug; Pyrazines; Thalidomide; Vincristine | 2007 |
[Role of bortezomib in the treatment of multiple myeloma].
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Doxorubicin; Humans; Liposomes; Melphalan; Multiple Myeloma; NF-kappa B; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Thalidomide | 2007 |
Frontline treatment of multiple myeloma in elderly patients.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease-Free Survival; Female; Health Services for the Aged; Humans; Lenalidomide; Male; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Survival Rate; Thalidomide | 2008 |
[Treatment for multiple myeloma: current status and future strategy in Japan].
Topics: Antineoplastic Combined Chemotherapy Protocols; Bone Density Conservation Agents; Boronic Acids; Bortezomib; Combined Modality Therapy; Diphosphonates; Immunologic Factors; Japan; Melphalan; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Pyrazines; Recurrence; Thalidomide; Time Factors; Transplantation, Autologous | 2008 |
Advances in therapy of multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease-Free Survival; Humans; Lenalidomide; Medical Oncology; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Stem Cell Transplantation; Thalidomide; Transplantation, Homologous; Treatment Outcome | 2008 |
Treatment of multiple myeloma in the targeted therapy era.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Combined Modality Therapy; Dexamethasone; Drug Delivery Systems; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisolone; Pyrazines; Salvage Therapy; Thalidomide; Transplantation Conditioning | 2009 |
Multiple myeloma.
Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Combined Modality Therapy; Genetic Predisposition to Disease; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Neoplasm Staging; Protease Inhibitors; Pyrazines; Remission Induction; Stem Cell Transplantation; Survival Rate; Thalidomide; Treatment Outcome | 2009 |
[Hematopoietic stem cell transplantation for multiple myeloma].
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Dexamethasone; Doxorubicin; Drug Discovery; Graft vs Tumor Effect; Hematopoietic Stem Cell Transplantation; Humans; Interferons; Melphalan; Multiple Myeloma; Prednisolone; Pyrazines; Thalidomide; Transplantation Conditioning; Transplantation, Autologous; Transplantation, Homologous; Vincristine | 2009 |
[New treatment strategies for multiple myeloma].
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials, Phase III as Topic; Dexamethasone; Diagnosis, Differential; Doxorubicin; Drug Discovery; Female; Humans; Lenalidomide; Male; Melphalan; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Prednisolone; Pyrazines; Remission Induction; Salvage Therapy; Thalidomide; Vincristine | 2009 |
New treatments for myeloma.
Topics: Boronic Acids; Bortezomib; Drug Therapy, Combination; Humans; Immunosuppressive Agents; Lenalidomide; Melphalan; Multiple Myeloma; Myeloablative Agonists; Neoplasm Staging; Prednisone; Protease Inhibitors; Pyrazines; Survival Rate; Thalidomide | 2010 |
New developments in the treatment of patients with multiple myeloma.
Topics: Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Boronic Acids; Bortezomib; Dexamethasone; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Pyrazines; Recurrence; Thalidomide | 2010 |
Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group.
Topics: Boronic Acids; Bortezomib; Glomerular Filtration Rate; Hematopoietic Stem Cell Transplantation; Humans; Incidence; Melphalan; Multiple Myeloma; Prognosis; Pyrazines; Renal Insufficiency; Thalidomide; Transplantation, Autologous | 2010 |
Thalidomide versus bortezomib based regimens as first-line therapy for patients with multiple myeloma: a systematic review.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Female; Humans; Male; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide | 2011 |
Treatment of newly diagnosed myeloma in patients not eligible for transplantation.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide; Treatment Outcome | 2011 |
[Partial recovery of kidney function for an autologous transplant in a patient with chronic kidney disease and multiple myeloma].
Topics: Acute Kidney Injury; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chronic Disease; Combined Modality Therapy; Dexamethasone; Down-Regulation; Doxorubicin; Hematopoietic Stem Cell Transplantation; Humans; Immunoglobulin lambda-Chains; Kidney Diseases; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloma Proteins; Pyrazines; Remission Induction; Renal Dialysis; Transplantation, Autologous | 2011 |
[Current treatment of AL amyloidosis].
Topics: Amyloid; Amyloidosis; Biomarkers; Boronic Acids; Bortezomib; Cardiomyopathies; Consensus Development Conferences as Topic; Dexamethasone; Drug Therapy, Combination; Heart Transplantation; Humans; Immunoglobulin Light Chains; Kaplan-Meier Estimate; Kidney Failure, Chronic; Kidney Transplantation; Lenalidomide; Melphalan; Natriuretic Peptide, Brain; Paraproteinemias; Paraproteins; Peptide Fragments; Prognosis; Pyrazines; Randomized Controlled Trials as Topic; Renal Dialysis; Thalidomide | 2011 |
Firstline treatment and maintenance in newly diagnosed multiple myeloma patients.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Dose-Response Relationship, Drug; Humans; Lenalidomide; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Pyrazines; Standard of Care; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous; Treatment Outcome | 2011 |
[New insights in the treatment of myeloma with renal failure].
Topics: Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Contraindications; Cyclophosphamide; Dexamethasone; Fluid Therapy; Humans; Hypercalcemia; Immunoglobulin Light Chains; Kidney Failure, Chronic; Lenalidomide; Melphalan; Multicenter Studies as Topic; Multiple Myeloma; Myeloma Proteins; Prospective Studies; Protease Inhibitors; Pyrazines; Randomized Controlled Trials as Topic; Renal Dialysis; Thalidomide | 2011 |
[New treatment strategy for Crow-Fukase (POEMS) syndrome].
Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal, Humanized; Bevacizumab; Boronic Acids; Bortezomib; Combined Modality Therapy; Demyelinating Diseases; Humans; Lenalidomide; Melphalan; Peripheral Blood Stem Cell Transplantation; POEMS Syndrome; Pyrazines; Thalidomide; Transplantation, Autologous; Vascular Endothelial Growth Factor A | 2010 |
The clinical effectiveness and cost-effectiveness of bortezomib and thalidomide in combination regimens with an alkylating agent and a corticosteroid for the first-line treatment of multiple myeloma: a systematic review and economic evaluation.
Topics: Adrenal Cortex Hormones; Alkylating Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cost-Benefit Analysis; Cyclophosphamide; Humans; Immunosuppressive Agents; Melphalan; Multiple Myeloma; Pyrazines; Quality of Life; Quality-Adjusted Life Years; Randomized Controlled Trials as Topic; Survival Analysis; Thalidomide | 2011 |
[Renal disorders associated with monoclonal gammopathies: diagnostic and therapeutic progress].
Topics: Amyloidosis; Biopsy; Boronic Acids; Bortezomib; Dexamethasone; Heart Transplantation; Humans; Immunoglobulin Heavy Chains; Immunoglobulin Light Chains; Kidney; Kidney Diseases; Kidney Transplantation; Melphalan; Paraproteinemias; Plasma Exchange; Pyrazines | 2012 |
[Multiple myeloma].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Denosumab; Diphosphonates; Humans; Imidazoles; Melphalan; Multiple Myeloma; Peripheral Nervous System Diseases; Prednisolone; Pyrazines; Randomized Controlled Trials as Topic; Thalidomide; Zoledronic Acid | 2012 |
[AL amyloidosis].
Topics: Algorithms; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Diagnosis, Differential; Heart Failure; Humans; Lenalidomide; Melphalan; Myocardium; Palliative Care; Patient Selection; Prognosis; Pyrazines; Quality of Life; Risk Assessment; Risk Factors; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous | 2012 |
Response to low-dose bortezomib in plasma cell leukemia patients with malignant pleural effusion and ascites: a case report and a review of the literature.
Topics: Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Ascites; Boronic Acids; Bortezomib; Fatal Outcome; Humans; Leukemia, Plasma Cell; Male; Melphalan; Pleural Effusion, Malignant; Prednisone; Pyrazines; Treatment Failure | 2012 |
Fifty years of melphalan use in hematopoietic stem cell transplantation.
Topics: Adenine Nucleotides; Alemtuzumab; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Arabinonucleosides; Boronic Acids; Bortezomib; Clofarabine; Graft Survival; Hematologic Neoplasms; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Myeloablative Agonists; Pyrazines; Thalidomide; Transplantation Conditioning; Transplantation, Autologous; Transplantation, Homologous | 2013 |
Diagnosis and treatment of multiple myeloma and AL amyloidosis with focus on improvement of renal lesion.
Topics: Aged; Amyloidosis; Bence Jones Protein; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Humans; Immunoglobulin Light-chain Amyloidosis; Kidney; Lenalidomide; Melphalan; Methylprednisolone; Middle Aged; Multiple Myeloma; Neoplasms, Second Primary; Pyrazines; Renal Insufficiency; Thalidomide | 2012 |
Light-chain amyloidosis: SCT, novel agents and beyond.
Topics: Amyloidosis; Animals; Boronic Acids; Bortezomib; Dexamethasone; Hematopoietic Stem Cell Transplantation; Humans; Immunoglobulin Light Chains; Immunologic Factors; Immunosuppressive Agents; Immunotherapy; Lenalidomide; Melphalan; Pyrazines; Survival Analysis; Thalidomide | 2013 |
Doublets, triplets, or quadruplets of novel agents in newly diagnosed myeloma?
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Therapy; Humans; Lenalidomide; Medical Oncology; Melphalan; Models, Biological; Multiple Myeloma; Oligopeptides; Prednisone; Pyrazines; Risk; Thalidomide; Treatment Outcome | 2012 |
Current therapeutic strategy for multiple myeloma.
Topics: Age Factors; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bone and Bones; Bone Density Conservation Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Creatinine; Cyclophosphamide; Denosumab; Dexamethasone; Diphosphonates; Doxorubicin; Hematopoietic Stem Cell Transplantation; Humans; Imidazoles; Immunoglobulins; Kidney; Lenalidomide; Leukemia, Myeloid, Acute; Maintenance Chemotherapy; Melphalan; Molecular Targeted Therapy; Multiple Myeloma; Neoplasms, Second Primary; Precision Medicine; Prednisolone; Pyrazines; Quality of Life; Recurrence; Remission Induction; Survival Rate; Thalidomide; Zoledronic Acid | 2013 |
Induction therapy for newly diagnosed multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Doxorubicin; Hematopoietic Stem Cell Transplantation; Humans; Induction Chemotherapy; Lenalidomide; Maintenance Chemotherapy; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide; Transplantation, Autologous; Transplantation, Homologous | 2013 |
Part II: role of maintenance therapy in transplant-ineligible patients.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Doxorubicin; Humans; Lenalidomide; Maintenance Chemotherapy; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide; Vincristine | 2013 |
New advances in the diagnosis and treatment of POEMS syndrome.
Topics: Antibodies, Monoclonal, Humanized; Bevacizumab; Boronic Acids; Bortezomib; Castleman Disease; Chromosome Aberrations; Combined Modality Therapy; Dexamethasone; Disease Management; Drug Therapy, Combination; Genes, Immunoglobulin; Humans; Hypertension, Pulmonary; Lenalidomide; Melphalan; Osteosclerosis; Peripheral Blood Stem Cell Transplantation; Plasma Cells; POEMS Syndrome; Prognosis; Pyrazines; Severity of Illness Index; Symptom Assessment; Thalidomide; Transplantation, Autologous; Vascular Endothelial Growth Factor A | 2013 |
Strategies for induction, autologous hematopoietic stem cell transplantation, consolidation, and maintenance for transplantation-eligible multiple myeloma patients.
Topics: Angiogenesis Inhibitors; Autografts; Boronic Acids; Bortezomib; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Myeloablative Agonists; Pyrazines; Remission Induction; Thalidomide; Time Factors; Transplantation Conditioning | 2013 |
Frontline Therapy for Patients with Multiple Myeloma not Eligible for Stem Cell Transplantation.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide | 2014 |
[Treatment of transplant-eligible symptomatic multiple myeloma].
Topics: Antineoplastic Combined Chemotherapy Protocols; Autografts; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Combined Modality Therapy; Consolidation Chemotherapy; Cyclophosphamide; Dexamethasone; Drug Discovery; Hematopoietic Stem Cell Transplantation; Humans; Induction Chemotherapy; Lenalidomide; Maintenance Chemotherapy; Melphalan; Multiple Myeloma; Neoplasm, Residual; Nitrogen Mustard Compounds; Pyrazines; Remission Induction; Thalidomide; Transplantation Conditioning | 2014 |
[Treatment of untreated multiple myeloma patients ineligible for autologous stem cell transplantation].
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Autografts; Boronic Acids; Bortezomib; Clinical Trials as Topic; Contraindications; Cyclophosphamide; Dexamethasone; Drug Discovery; Hematopoietic Stem Cell Transplantation; Humans; Japan; Lenalidomide; Maintenance Chemotherapy; Melphalan; Multiple Myeloma; Practice Guidelines as Topic; Prednisone; Pyrazines; Risk Factors; Thalidomide | 2014 |
Immunoglobulin light chain amyloidosis: 2014 update on diagnosis, prognosis, and treatment.
Topics: Age Factors; Amyloidosis; Antineoplastic Agents; Biomarkers; Bone Marrow; Boronic Acids; Bortezomib; Creatinine; Cyclophosphamide; Dexamethasone; Humans; Immunoglobulin Light Chains; Melphalan; Pyrazines; Stem Cell Transplantation; Subcutaneous Fat; Survival Analysis; Troponin T | 2014 |
58 trial(s) available for pyrazines and melphalan
Article | Year |
---|---|
A prospective, open-label safety and efficacy study of combination treatment with bortezomib (PS-341, velcade and melphalan in patients with relapsed or refractory multiple myeloma.
Topics: Adolescent; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Melphalan; Multiple Myeloma; Neoplasm Recurrence, Local; Prognosis; Prospective Studies; Pyrazines; Safety; Treatment Outcome | 2003 |
Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Drug Administration Schedule; Drug Synergism; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Recurrence, Local; Neutropenia; Pyrazines; Severity of Illness Index; Survival Analysis; Treatment Outcome | 2006 |
Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study.
Topics: Aged; Aged, 80 and over; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cohort Studies; Disease-Free Survival; Humans; Immunophenotyping; Maximum Tolerated Dose; Melphalan; Multiple Myeloma; Prednisone; Pyrazines | 2006 |
Intermediate-dose melphalan (100 mg/m2)/bortezomib/thalidomide/dexamethasone and stem cell support in patients with refractory or relapsed myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Drug Administration Schedule; Female; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Multiple Myeloma; Neoplasm Staging; Pyrazines; Recurrence; Salvage Therapy; Survival Analysis; Thalidomide | 2006 |
Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Tolerance; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Pyrazines; Recurrence; Safety; Salvage Therapy; Thalidomide | 2007 |
Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Bence Jones Protein; Boronic Acids; Bortezomib; Dexamethasone; Doxorubicin; Female; Humans; Hypercalcemia; Kidney Failure, Chronic; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloma Proteins; Proteinuria; Pyrazines; Thalidomide; Treatment Outcome; Vincristine | 2007 |
Bortezomib in combination with thalidomide-dexamethasone for previously untreated multiple myeloma.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Hematopoietic Stem Cell Transplantation; Humans; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Remission Induction; Thalidomide; Transplantation, Autologous; Treatment Outcome | 2007 |
Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3.
Topics: Aged; Angiogenesis Inhibitors; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Female; Humans; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Stem Cell Transplantation; Thalidomide; Treatment Outcome | 2007 |
Bortezomib inhibits osteoclast activity in patients with multiple myeloma.
Topics: Adult; Antineoplastic Agents; Blood Component Removal; Boronic Acids; Bortezomib; Combined Modality Therapy; Drug Administration Schedule; Granulocyte Colony-Stimulating Factor; Humans; Melphalan; Multiple Myeloma; Osteoclasts; Patient Selection; Pyrazines; Stem Cell Transplantation; Transplantation, Autologous | 2007 |
Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: updated time-to-events results and prognostic factors for time to progression.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Biomarkers, Tumor; Boronic Acids; Bortezomib; Disease Progression; Disease-Free Survival; Female; Follow-Up Studies; Gastrointestinal Diseases; Hematologic Diseases; Humans; Karnofsky Performance Status; Male; Melphalan; Multiple Myeloma; Prednisone; Prognosis; Pyrazines; Survival Analysis | 2008 |
Safety and efficacy of bortezomib and melphalan combination in patients with relapsed or refractory multiple myeloma: updated results of a phase 1/2 study after longer follow-up.
Topics: Adult; Aged; Aged, 80 and over; Anemia; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dose-Response Relationship, Drug; Female; Follow-Up Studies; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Recurrence, Local; Neutropenia; Pyrazines; Thrombocytopenia | 2008 |
Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease Progression; Female; Follow-Up Studies; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Pyrazines; Survival Analysis; Time Factors; Treatment Outcome | 2008 |
The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Antineoplastic Combined Chemotherapy Protocols; Biomarkers; Bone and Bones; Bone Remodeling; Boronic Acids; Bortezomib; Cytokines; Dexamethasone; Female; Humans; Immunosuppressive Agents; Male; Melphalan; Middle Aged; Multiple Myeloma; Neovascularization, Physiologic; Pyrazines; Recurrence; Survival Rate; Thalidomide | 2008 |
Update on recent developments for patients with newly diagnosed multiple myeloma.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide; Treatment Outcome | 2008 |
Bortezomib administered pre-auto-SCT and as maintenance therapy post transplant for multiple myeloma: a single institution phase II study.
Topics: Adult; Aged; Boronic Acids; Bortezomib; Female; Granulocyte Colony-Stimulating Factor; Hematopoietic Stem Cell Mobilization; Herpesvirus 3, Human; Humans; Killer Cells, Natural; Lymphocyte Subsets; Male; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Pyrazines; Remission Induction; Survival Analysis; T-Lymphocytes, Cytotoxic; Transplantation, Autologous; Treatment Outcome; Virus Activation | 2009 |
Bortezomib, low-dose intravenous melphalan, and dexamethasone for patients with relapsed multiple myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease-Free Survival; Drug Administration Schedule; Female; Follow-Up Studies; Humans; Infusions, Intravenous; Kaplan-Meier Estimate; Male; Maximum Tolerated Dose; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Recurrence; Statistics, Nonparametric; Thrombocytopenia | 2009 |
Bortezomib, ascorbic acid and melphalan (BAM) therapy for patients with newly diagnosed multiple myeloma: an effective and well-tolerated frontline regimen.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Ascorbic Acid; Boronic Acids; Bortezomib; Humans; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Survival Analysis; Treatment Outcome | 2009 |
"Short course" bortezomib plus melphalan and prednisone as induction prior to transplant or as frontline therapy for nontransplant candidates in patients with previously untreated multiple myeloma.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chemotherapy, Adjuvant; Disease Progression; Drug Administration Schedule; Drug Monitoring; Drug Therapy, Combination; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Prednisone; Pyrazines; Statistics as Topic; Transplantation, Autologous; Treatment Outcome | 2010 |
VMP (Bortezomib, Melphalan, and Prednisone) is active and well tolerated in newly diagnosed patients with multiple myeloma with moderately impaired renal function, and results in reversal of renal impairment: cohort analysis of the phase III VISTA study.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cohort Studies; Disease Progression; Female; Humans; Kaplan-Meier Estimate; Kidney Diseases; Male; Melphalan; Multiple Myeloma; Multivariate Analysis; Prednisone; Prognosis; Pyrazines; Treatment Outcome | 2009 |
Bortezomib and high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myelome (IFM).
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Case-Control Studies; Demography; Disease Progression; Dose-Response Relationship, Drug; Female; France; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Stem Cell Transplantation; Survival Analysis; Transplantation Conditioning; Transplantation, Autologous | 2010 |
Bortezomib, thalidomide, dexamethasone induction therapy followed by melphalan, prednisolone, thalidomide consolidation therapy as a first line of treatment for patients with multiple myeloma who are non-transplant candidates: results of the Korean Multip
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Female; Hematopoietic Stem Cell Transplantation; Humans; Korea; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoadjuvant Therapy; Prednisolone; Pyrazines; Thalidomide; Treatment Outcome | 2010 |
Bortezomib as induction before autologous transplantation, followed by lenalidomide as consolidation-maintenance in untreated multiple myeloma patients.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chemotherapy, Adjuvant; Dexamethasone; Disease-Free Survival; Doxorubicin; Female; Humans; Italy; Kaplan-Meier Estimate; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoadjuvant Therapy; Polyethylene Glycols; Prednisone; Protease Inhibitors; Pyrazines; Stem Cell Transplantation; Thalidomide; Time Factors; Transplantation, Autologous; Treatment Outcome | 2010 |
Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; China; Europe; Female; Humans; Israel; Kaplan-Meier Estimate; Male; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Recurrence; Risk Assessment; Risk Factors; Time Factors; Treatment Outcome; United States | 2010 |
Safety and efficacy of bortezomib, melphalan and low doses dexamethasone (VM-dex) in newly diagnosed patients with multiple myeloma.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Male; Melphalan; Multiple Myeloma; Pyrazines; Treatment Outcome | 2010 |
Superior outcomes associated with complete response in newly diagnosed multiple myeloma patients treated with nonintensive therapy: analysis of the phase 3 VISTA study of bortezomib plus melphalan-prednisone versus melphalan-prednisone.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Multivariate Analysis; Prednisone; Prognosis; Pyrazines; Remission Induction; Time Factors; Treatment Outcome | 2010 |
Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myelom
Topics: Age Factors; Aged; Angiogenesis Inhibitors; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Administration Schedule; Female; Humans; Kaplan-Meier Estimate; Male; Melphalan; Multiple Myeloma; Prednisone; Proportional Hazards Models; Protease Inhibitors; Pyrazines; Risk Assessment; Risk Factors; Spain; Thalidomide; Time Factors; Treatment Outcome | 2010 |
A phase I/II trial combining high-dose melphalan and autologous transplant with bortezomib for multiple myeloma: a dose- and schedule-finding study.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Transplantation Conditioning | 2010 |
Efficacy and safety of once-weekly bortezomib in multiple myeloma patients.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Drug Administration Schedule; Female; Humans; Incidence; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Staging; Peripheral Nervous System Diseases; Prednisone; Pyrazines; Thalidomide; Treatment Outcome | 2010 |
Risk factors for, and reversibility of, peripheral neuropathy associated with bortezomib-melphalan-prednisone in newly diagnosed patients with multiple myeloma: subanalysis of the phase 3 VISTA study.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Multivariate Analysis; Peripheral Nervous System Diseases; Prednisone; Pyrazines; Risk Factors | 2011 |
A phase II open-label trial of bortezomib in patients with multiple myeloma who have undergone an autologous peripheral blood stem cell transplant and failed to achieve a complete response.
Topics: Aged; Antineoplastic Agents; Boronic Acids; Bortezomib; Chemotherapy, Adjuvant; Chi-Square Distribution; Disease Progression; Disease-Free Survival; Feasibility Studies; Female; Humans; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloablative Agonists; Peripheral Blood Stem Cell Transplantation; Pyrazines; Time Factors; Transplantation, Autologous; Treatment Failure; United States | 2012 |
Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Humans; Kaplan-Meier Estimate; Melphalan; Multiple Myeloma; Prednisone; Proportional Hazards Models; Pyrazines; Thalidomide; Treatment Outcome | 2010 |
Fewer bone disease events, improvement in bone remodeling, and evidence of bone healing with bortezomib plus melphalan-prednisone vs. melphalan-prednisone in the phase III VISTA trial in multiple myeloma.
Topics: Aged; Aged, 80 and over; Alkaline Phosphatase; Antineoplastic Combined Chemotherapy Protocols; Biomarkers; Bone Diseases; Bone Remodeling; Boronic Acids; Bortezomib; Cell Differentiation; Female; Humans; Intercellular Signaling Peptides and Proteins; Male; Melphalan; Middle Aged; Multiple Myeloma; Osteoblasts; Prednisone; Pyrazines; Radiotherapy, Adjuvant | 2011 |
Characterization of haematological parameters with bortezomib-melphalan-prednisone versus melphalan-prednisone in newly diagnosed myeloma, with evaluation of long-term outcomes and risk of thromboembolic events with use of erythropoiesis-stimulating agent
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Erythrocyte Transfusion; Female; Hematinics; Humans; Incidence; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisolone; Pyrazines; Survival Rate; Thromboembolism | 2011 |
Predictive factors for successful salvage high-dose therapy in patients with multiple myeloma relapsing after autologous blood stem cell transplantation.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Busulfan; Combined Modality Therapy; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Humans; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Multivariate Analysis; Neutropenia; Peripheral Blood Stem Cell Transplantation; Prognosis; Pyrazines; Recurrence; Retrospective Studies; Salvage Therapy; Transplantation Conditioning; Transplantation, Autologous; Treatment Outcome | 2011 |
Identification of prognostic factors for plerixafor-based hematopoietic stem cell mobilization.
Topics: Adolescent; Adult; Aged; Aged, 80 and over; Anti-HIV Agents; Antineoplastic Agents; Benzylamines; Boronic Acids; Bortezomib; Child; Cyclams; Europe; Female; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cell Transplantation; Heterocyclic Compounds; Humans; Lenalidomide; Lymphoma, Non-Hodgkin; Male; Melphalan; Middle Aged; Myeloablative Agonists; Prognosis; Pyrazines; Thalidomide; Transplantation, Autologous; Transplantation, Homologous | 2011 |
Bortezomib and high-dose melphalan conditioning for stem cell transplantation for AL amyloidosis: a pilot study.
Topics: Aged; Amyloidosis; Antineoplastic Agents; Boronic Acids; Bortezomib; Female; Humans; Male; Melphalan; Middle Aged; Myeloablative Agonists; Pilot Projects; Pyrazines; Stem Cell Transplantation; Transplantation Conditioning; Transplantation, Autologous | 2011 |
A randomized phase 2 trial of a preparative regimen of bortezomib, high-dose melphalan, arsenic trioxide, and ascorbic acid.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Arsenic Trioxide; Arsenicals; Ascorbic Acid; Blood Transfusion, Autologous; Boronic Acids; Bortezomib; Disease-Free Survival; Drug Administration Schedule; Female; Follow-Up Studies; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Oxides; Prognosis; Pyrazines; Transplantation Conditioning | 2012 |
Safety and efficacy of bortezomib-melphalan-prednisone-thalidomide followed by bortezomib-thalidomide maintenance (VMPT-VT) versus bortezomib-melphalan-prednisone (VMP) in untreated multiple myeloma patients with renal impairment.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Glomerular Filtration Rate; Humans; Induction Chemotherapy; Kidney Diseases; Maintenance Chemotherapy; Male; Melphalan; Multiple Myeloma; Neoadjuvant Therapy; Prednisone; Pyrazines; Survival Analysis; Thalidomide; Treatment Outcome | 2011 |
Thalidomide and dexamethasone vs. bortezomib and dexamethasone for melphalan refractory myeloma: a randomized study.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cross-Over Studies; Dexamethasone; Disease-Free Survival; Drug Resistance, Neoplasm; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Quality of Life; Recurrence; Thalidomide | 2012 |
Bortezomib salvage followed by a Phase I/II study of bortezomib plus high-dose melphalan and tandem autologous transplantation for patients with primary resistant myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease Progression; Fanconi Anemia Complementation Group Proteins; Female; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Salvage Therapy; Signal Transduction; Survival Analysis; Transplantation Conditioning; Transplantation, Autologous; Treatment Outcome | 2012 |
Health-related quality of life in elderly, newly diagnosed multiple myeloma patients treated with VMP vs. MP: results from the VISTA trial.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Pyrazines; Quality of Life; Treatment Outcome | 2012 |
High-dose melphalan with bortezomib as conditioning regimen for autologous stem cell transplant in patients with newly diagnosed multiple myeloma who exhibited at least very good partial response to bortezomib-based induction therapy.
Topics: Antineoplastic Combined Chemotherapy Protocols; Bipolar Disorder; Boronic Acids; Bortezomib; Combined Modality Therapy; Dose-Response Relationship, Drug; Female; Humans; Induction Chemotherapy; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Nausea; Neutropenia; Pyrazines; Remission Induction; Stem Cell Transplantation; Transplantation Conditioning; Transplantation, Autologous; Treatment Outcome | 2012 |
Phase I trial of bortezomib during maintenance phase after high dose melphalan and autologous stem cell transplantation in patients with multiple myeloma.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Boronic Acids; Bortezomib; Female; Humans; Maintenance Chemotherapy; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Remission Induction; Stem Cell Transplantation; Transplantation, Autologous | 2012 |
Bortezomib and dexamethasone consolidation following risk-adapted melphalan and stem cell transplantation for patients with newly diagnosed light-chain amyloidosis.
Topics: Adult; Aged; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Female; Humans; Male; Melphalan; Middle Aged; Pyrazines; Stem Cell Transplantation | 2013 |
Bortezomib, melphalan, and prednisone in elderly patients with relapsed/refractory multiple myeloma: a multicenter, open label phase 1/2 study.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Female; Humans; Male; Maximum Tolerated Dose; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Recurrence | 2013 |
Persistent overall survival benefit and no increased risk of second malignancies with bortezomib-melphalan-prednisone versus melphalan-prednisone in patients with previously untreated multiple myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; beta 2-Microglobulin; Biomarkers, Tumor; Boronic Acids; Bortezomib; Drug Administration Schedule; Female; Follow-Up Studies; Humans; Incidence; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Multivariate Analysis; Neoplasm Staging; Neoplasms, Second Primary; Odds Ratio; Prednisone; Proportional Hazards Models; Pyrazines; Risk; Spain; Treatment Outcome | 2013 |
Phase I/II study of bortezomib-melphalan-prednisolone for previously untreated Japanese patients with multiple myeloma.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Female; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisolone; Pyrazines; Treatment Outcome | 2013 |
Phase II clinical trial for the evaluation of bortezomib within the reduced intensity conditioning regimen (RIC) and post-allogeneic transplantation for high-risk myeloma patients.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Boronic Acids; Bortezomib; Chemical and Drug Induced Liver Injury; Combined Modality Therapy; Cyclosporine; Drug Synergism; Female; Graft vs Host Disease; Hematologic Diseases; Humans; Immunosuppressive Agents; Maintenance Chemotherapy; Male; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Peripheral Nervous System Diseases; Protease Inhibitors; Pyrazines; Remission Induction; Reoperation; Salvage Therapy; T-Lymphocyte Subsets; Transplantation Conditioning; Transplantation, Autologous; Transplantation, Homologous; Vidarabine | 2013 |
Bortezomib induction, reduced-intensity transplantation, and lenalidomide consolidation-maintenance for myeloma: updated results.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease Progression; Disease-Free Survival; Doxorubicin; Drug Administration Schedule; Female; Humans; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Polyethylene Glycols; Pyrazines; Recurrence; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous; Treatment Outcome | 2013 |
Combination of high-dose melphalan and bortezomib as conditioning regimen for autologous peripheral blood stem cell transplantation in multiple myeloma.
Topics: Adult; Aged; Antineoplastic Agents; Asian People; Boronic Acids; Bortezomib; Drug Synergism; Drug Therapy, Combination; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Pyrazines; Transplantation Conditioning; Transplantation, Autologous | 2013 |
Phase I/II study of bortezomib-BEAM and autologous hematopoietic stem cell transplantation for relapsed indolent non-Hodgkin lymphoma, transformed, or mantle cell lymphoma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Carmustine; Cytarabine; Etoposide; Female; Hematopoietic Stem Cell Transplantation; Humans; Lymphoma, Mantle-Cell; Lymphoma, Non-Hodgkin; Male; Maximum Tolerated Dose; Melphalan; Middle Aged; Pyrazines; Recurrence; Remission Induction; Survival Analysis; Transplantation, Autologous | 2014 |
Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: updated follow-up and improved survival.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Female; Follow-Up Studies; Humans; Induction Chemotherapy; Kaplan-Meier Estimate; Maintenance Chemotherapy; Male; Melphalan; Middle Aged; Multiple Myeloma; Neutropenia; Peripheral Nervous System Diseases; Prednisone; Pyrazines; Thalidomide; Thrombocytopenia; Treatment Outcome | 2014 |
Evaluation of the serum free light chain (sFLC) analysis in prediction of response in symptomatic multiple myeloma patients: rapid profound reduction in involved FLC predicts achievement of VGPR.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Drug Monitoring; Female; Half-Life; Humans; Immunoglobulin Light Chains; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloma Proteins; Prednisone; Prospective Studies; Pyrazines; Sensitivity and Specificity; Thalidomide; Treatment Outcome | 2014 |
Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma.
Topics: Aged; Aged, 80 and over; Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chromosome Deletion; Chromosomes, Human, Pair 17; Disease-Free Survival; Female; Follow-Up Studies; Humans; Immunoglobulin A; Interleukin-6; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Pyrazines; Survival Rate | 2014 |
High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label,
Topics: Adult; Aged; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Consolidation Chemotherapy; Cyclophosphamide; Dexamethasone; Disease Progression; Doxorubicin; Female; Humans; Induction Chemotherapy; Intention to Treat Analysis; Male; Melphalan; Middle Aged; Multiple Myeloma; Neutropenia; Peripheral Nervous System Diseases; Proportional Hazards Models; Pyrazines; Recurrence; Retreatment; Salvage Therapy; Stem Cell Transplantation; Thrombocytopenia; Time Factors; Transplantation, Autologous | 2014 |
A phase II study of V-BEAM as conditioning regimen before second auto-SCT for multiple myeloma.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Autografts; Boronic Acids; Bortezomib; Carmustine; Cytarabine; Female; Follow-Up Studies; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Podophyllotoxin; Pyrazines; Stem Cell Transplantation; Transplantation Conditioning | 2014 |
GEM2005 trial update comparing VMP/VTP as induction in elderly multiple myeloma patients: do we still need alkylators?
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease-Free Survival; Female; Follow-Up Studies; Humans; Induction Chemotherapy; Kaplan-Meier Estimate; Maintenance Chemotherapy; Male; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide | 2014 |
Effect of cumulative bortezomib dose on survival in multiple myeloma patients receiving bortezomib-melphalan-prednisone in the phase III VISTA study.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Humans; Male; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Survival Analysis | 2015 |
121 other study(ies) available for pyrazines and melphalan
Article | Year |
---|---|
The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications.
Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Boronic Acids; Bortezomib; Cell Adhesion; DNA Damage; Doxorubicin; Drug Resistance, Neoplasm; Drug Synergism; Female; Humans; Melphalan; Middle Aged; Multiple Myeloma; NF-kappa B; Protease Inhibitors; Pyrazines; Recurrence; Tumor Cells, Cultured | 2003 |
The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents.
Topics: Active Transport, Cell Nucleus; Adenoviridae; Antineoplastic Agents; Apoptosis; Blotting, Western; Boronic Acids; Bortezomib; Cell Division; Cell Nucleus; Cell Survival; Cysteine Endopeptidases; Cytosol; Dose-Response Relationship, Drug; Genes, Dominant; Humans; I-kappa B Proteins; Melphalan; Microscopy, Fluorescence; Multienzyme Complexes; Multiple Myeloma; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphorylation; Proteasome Endopeptidase Complex; Pyrazines; Tetrazolium Salts; Thiazoles; Time Factors; Transfection; Tumor Cells, Cultured; Ubiquitin | 2003 |
Characterization of a R115777-resistant human multiple myeloma cell line with cross-resistance to PS-341.
Topics: Boronic Acids; Bortezomib; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Doxorubicin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Etoposide; Farnesyltranstransferase; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Heat-Shock Proteins; Humans; Melphalan; Multiple Myeloma; Oligonucleotide Array Sequence Analysis; Phenotype; Protease Inhibitors; Protein Prenylation; Pyrazines; Quinolones; ras Proteins; Staurosporine; Tunicamycin | 2005 |
Multiple myeloma: the present and the future.
Topics: Antineoplastic Agents, Alkylating; Bone Diseases; Boronic Acids; Bortezomib; Diphosphonates; Humans; Immunosuppressive Agents; Medical Oncology; Melphalan; Multiple Myeloma; Protease Inhibitors; Pyrazines; Stem Cell Transplantation; Thalidomide; Treatment Outcome | 2005 |
Bortezomib-induced Sweet's syndrome.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Administration Schedule; Erectile Dysfunction; Humans; Immunosuppressive Agents; Male; Melphalan; Methylprednisolone; Multiple Myeloma; Pain; Peripheral Nervous System Diseases; Prednisolone; Protease Inhibitors; Pyrazines; Recurrence; Sleep Initiation and Maintenance Disorders; Sweet Syndrome; Testicular Diseases | 2005 |
The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance.
Topics: Acetylation; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; bcl-X Protein; Boronic Acids; Bortezomib; Cell Cycle; Cell Line, Tumor; Dexamethasone; Drug Resistance, Neoplasm; Drug Synergism; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Indoles; Melphalan; Multiple Myeloma; Panobinostat; Pyrazines | 2006 |
Clinical response of cutaneous squamous-cell carcinoma to bortezomib given for myeloma.
Topics: Anti-Inflammatory Agents; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Carcinoma, Squamous Cell; Clarithromycin; Dexamethasone; Diphosphonates; Glomerulonephritis; Humans; Idarubicin; Imidazoles; Immunosuppressive Agents; Male; Melphalan; Middle Aged; Multiple Myeloma; Nephrotic Syndrome; Pamidronate; Protein Synthesis Inhibitors; Pyrazines; Skin Neoplasms; Thalidomide; Zoledronic Acid | 2006 |
Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma.
Topics: Adamantane; Apoptosis; Benzamides; Boronic Acids; Bortezomib; Caspase Inhibitors; Caspases; Cell Growth Processes; Dexamethasone; Humans; Hydroquinones; Imatinib Mesylate; Leukemia, Erythroblastic, Acute; Melphalan; Multiple Myeloma; Piperazines; Proto-Oncogene Proteins c-abl; Proto-Oncogene Proteins c-jun; Pyrazines; Pyrimidines; Transfection; Up-Regulation | 2007 |
48th annual meeting of the American Society of Hematology December 9-12, 2006, Orlando, FL.
Topics: Administration, Oral; Animals; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Disease Progression; Drug Therapy, Combination; Hematologic Diseases; Hematology; Humans; Lenalidomide; Lymphoma, B-Cell; Lymphoma, Large B-Cell, Diffuse; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Quinolones; Recurrence; Stem Cell Transplantation; Thalidomide; Transplantation Conditioning; Transplantation, Autologous | 2007 |
Multiple myeloma therapies.
Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzoquinones; Boronic Acids; Bortezomib; Clinical Trials as Topic; HSP90 Heat-Shock Proteins; Humans; Immunosuppressive Agents; Lactams, Macrocyclic; Melphalan; Multiple Myeloma; Pyrazines; Thalidomide | 2007 |
Targeting NF-kappaB pathway with an IKK2 inhibitor induces inhibition of multiple myeloma cell growth.
Topics: Antineoplastic Agents; Antineoplastic Agents, Alkylating; Apoptosis; Boronic Acids; Bortezomib; Cell Division; Cell Line, Tumor; Cell Survival; Enzyme Inhibitors; Humans; I-kappa B Kinase; Melphalan; Multiple Myeloma; NF-kappa B; Pyrazines; Pyrimidines | 2007 |
Antimyeloma effects of arsenic trioxide are enhanced by melphalan, bortezomib and ascorbic acid.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Apoptosis; Arsenic Trioxide; Arsenicals; Ascorbic Acid; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Enzyme-Linked Immunosorbent Assay; Humans; Immunoglobulin G; Melphalan; Mice; Mice, SCID; Multiple Myeloma; Oxides; Pyrazines; Xenograft Model Antitumor Assays | 2007 |
A pivotal role for Mcl-1 in Bortezomib-induced apoptosis.
Topics: Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Caspase Inhibitors; Caspases; Cell Line, Tumor; Doxorubicin; Humans; Melphalan; Mice; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Poly(ADP-ribose) Polymerases; Protease Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; RNA, Small Interfering; Up-Regulation | 2008 |
Alkylating agents induce activation of NFkappaB in multiple myeloma cells.
Topics: Antineoplastic Agents, Alkylating; Boronic Acids; Bortezomib; Cell Line, Tumor; Doxorubicin; Humans; Melphalan; Multiple Myeloma; NF-kappa B; Pyrazines | 2008 |
Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.
Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Death; Cell Line; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Humans; Immunophenotyping; Melphalan; Multiple Myeloma; Protein Isoforms; Protein Kinases; Proto-Oncogene Proteins c-kit; Pyrazines; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2008 |
[Treatment of myeloma in the elderly].
Topics: Aged; Aged, 80 and over; Bone Density Conservation Agents; Bone Marrow Transplantation; Boronic Acids; Bortezomib; Diphosphonates; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Myeloablative Agonists; Pyrazines; Thalidomide | 2008 |
A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma.
Topics: Animals; Bone Marrow; Boronic Acids; Bortezomib; Cell Proliferation; Chromosome Aberrations; Clone Cells; Drug Evaluation, Preclinical; Drug Resistance, Neoplasm; Hematopoiesis; Humans; Melphalan; Models, Biological; Multiple Myeloma; Neoplastic Stem Cells; Plasma Cells; Pyrazines; Rats; Stromal Cells; Tumor Cells, Cultured | 2008 |
Hepatic veno-occlusive disease after tandem autologous stem cell transplantation conditioned by melphalan.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Doxorubicin; Etoposide; Hepatic Veno-Occlusive Disease; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloablative Agonists; Pyrazines; Stem Cell Transplantation; Transplantation Conditioning; Transplantation, Autologous | 2008 |
Treatment of myeloma--are we making progress?
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease Progression; Humans; Melphalan; Multiple Myeloma; Outcome Assessment, Health Care; Prednisone; Pyrazines | 2008 |
Drug-induced hypersensitivity syndrome after bortezomib treatment for refractory multiple myeloma.
Topics: Acyclovir; Antineoplastic Agents; Antiviral Agents; Boronic Acids; Bortezomib; Cyclosporine; Dexamethasone; Drug Hypersensitivity; Exanthema Subitum; Herpesvirus 3, Human; Herpesvirus 6, Human; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Recurrence, Local; Prednisone; Pyrazines; Syndrome; Virus Activation | 2009 |
Ectopic cyclin D1 overexpression increases chemosensitivity but not cell proliferation in multiple myeloma.
Topics: Aged; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Cyclin D2; Cyclin-Dependent Kinase Inhibitor p27; Cyclins; Dexamethasone; Female; Humans; Intracellular Signaling Peptides and Proteins; Male; Melphalan; Middle Aged; Multiple Myeloma; Phosphorylation; Pyrazines; Retinoblastoma Protein; Thalidomide; Time Factors; Transfection; Up-Regulation; Vincristine | 2008 |
The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma.
Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Doxorubicin; Drug Synergism; G1 Phase; Humans; Imidazoles; Melphalan; Multiple Myeloma; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphoproteins; Phosphorylation; Protein Kinases; Proto-Oncogene Proteins c-akt; Pyrazines; Quinolines; Recombinant Proteins; Ribosomal Protein S6 Kinases, 70-kDa; TOR Serine-Threonine Kinases | 2009 |
Bortezomib plus melphalan and prednisone for multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide | 2008 |
New evidence in oncologic and cardiocirculatory medicine.
Topics: Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Hormonal; Boronic Acids; Bortezomib; Breast Neoplasms; Cardiology; Diagnosis, Computer-Assisted; Drug Therapy, Combination; Evidence-Based Medicine; Female; Humans; Mammography; Medical Oncology; Melphalan; Multiple Myeloma; Prednisone; Pyrazines | 2009 |
Bortezomib plus melphalan and prednisone for multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Survival Rate | 2008 |
Bortezomib plus melphalan and prednisone for multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cost-Benefit Analysis; Disease Progression; Humans; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Survival Analysis; Thalidomide | 2008 |
Bortezomib-induced cutaneous lesions in multiple myeloma patients: a case report.
Topics: Aged; Anti-Inflammatory Agents; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Cyclophosphamide; Dexamethasone; Doxorubicin; Drug Eruptions; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Multiple Myeloma; Prednisone; Protease Inhibitors; Pyrazines; Salvage Therapy; Vincristine | 2008 |
Cutaneous involvement in multiple myeloma and bortezomib.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Female; Humans; Immunoglobulin A; Melphalan; Multiple Myeloma; Myeloma Proteins; Paresthesia; Peripheral Nervous System Diseases; Plasma Cells; Prednisone; Pyrazines; Remission Induction; Skin; Thalidomide; Xerophthalmia | 2009 |
[Therapeutic news in multiple myeloma. Congress of the French National Society of Internal Medicine, December 2008, Bordeaux].
Topics: Antineoplastic Combined Chemotherapy Protocols; Bone Marrow Transplantation; Boronic Acids; Bortezomib; France; Humans; Internal Medicine; Melphalan; Multiple Myeloma; Prognosis; Pyrazines; Societies, Medical; Thalidomide | 2009 |
Hematology: Bortezomib in newly diagnosed multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials, Phase III as Topic; Disease Progression; Dose-Response Relationship, Drug; Follow-Up Studies; Humans; Melphalan; Multicenter Studies as Topic; Multiple Myeloma; Prednisone; Protease Inhibitors; Pyrazines; Randomized Controlled Trials as Topic; Survival Rate; Time Factors; Treatment Outcome | 2009 |
Successful bortezomib-based treatment in POEMS syndrome.
Topics: Adult; Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Cytarabine; Depression, Chemical; Dexamethasone; Doxorubicin; Drug Therapy, Combination; Humans; Male; Melphalan; Plasma Cells; POEMS Syndrome; Prednisone; Protease Inhibitors; Pyrazines; Remission Induction; Vascular Endothelial Growth Factor A; Vincristine | 2009 |
DKK1 correlates with response and predicts rapid relapse after autologous stem cell transplantation in multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Biomarkers, Tumor; Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Doxorubicin; Female; Follow-Up Studies; Humans; Intercellular Signaling Peptides and Proteins; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloma Proteins; Peripheral Blood Stem Cell Transplantation; Prognosis; Pyrazines; Recurrence; Thalidomide; Transplantation, Autologous; Vincristine | 2010 |
Vorinostat enhances the antimyeloma effects of melphalan and bortezomib.
Topics: Animals; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme-Linked Immunosorbent Assay; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Male; Melphalan; Mice; Mice, SCID; Multiple Myeloma; Myeloma Proteins; Neoplasm Proteins; Protease Inhibitors; Pyrazines; Vorinostat; Xenograft Model Antitumor Assays | 2010 |
Safety and efficacy of bortezomib-based regimens for multiple myeloma patients with renal impairment: a retrospective study of Italian Myeloma Network GIMEMA.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cardiovascular Diseases; Clinical Trials as Topic; Cyclophosphamide; Dexamethasone; Doxorubicin; Female; Follow-Up Studies; Gastrointestinal Diseases; Glomerular Filtration Rate; Hematologic Diseases; Humans; Italy; Kidney Diseases; Male; Melphalan; Middle Aged; Multicenter Studies as Topic; Multiple Myeloma; Neoplasm Proteins; Peripheral Nervous System Diseases; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Retrospective Studies; Survival Analysis; Thalidomide | 2010 |
Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma.
Topics: Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Synergism; Fanconi Anemia; Fanconi Anemia Complementation Group D2 Protein; Gene Expression; Humans; Imidazoles; Melphalan; Multiple Myeloma; NF-kappa B; Pyrazines; Quinoxalines; Transcription Factor RelB | 2009 |
The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Boronic Acids; Bortezomib; Cell Death; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Male; Melphalan; Mice; Mice, SCID; Multiple Myeloma; Proteasome Inhibitors; Pyrazines; Threonine; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2010 |
Bortezomib successfully reverses early recurrence of light-chain deposition disease in a renal allograft: a case report.
Topics: Adult; Antilymphocyte Serum; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Kidney Failure, Chronic; Kidney Transplantation; Male; Melphalan; Multiple Myeloma; Paraproteinemias; Pyrazines; Recurrence; Stem Cell Transplantation; Transplantation, Autologous; Treatment Outcome | 2009 |
Treatment of multiple myeloma: 2009 update.
Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease Progression; Doxorubicin; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous; Treatment Outcome; Vincristine | 2009 |
INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Azepines; Blotting, Western; Boronic Acids; Bortezomib; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cells, Cultured; Coculture Techniques; Humans; Interleukin-6; Janus Kinase 1; Janus Kinase 2; Melphalan; Mice; Mice, SCID; Molecular Structure; Multiple Myeloma; Phosphorylation; Protein Kinase Inhibitors; Pyrazines; Pyridines; STAT3 Transcription Factor; Stromal Cells; Treatment Outcome; Xenograft Model Antitumor Assays | 2010 |
Mantle cell lymphoma arising in a multiple myeloma patient responding to lenalidomide.
Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Murine-Derived; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Cyclin D1; Dexamethasone; Hematopoietic Stem Cell Transplantation; Humans; Immunocompromised Host; Immunosuppression Therapy; Lenalidomide; Lymphoma, Mantle-Cell; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Proteins; Neoplasms, Second Primary; Pyrazines; Rituximab; Thalidomide; Transplantation, Autologous | 2010 |
Rapid control of previously untreated multiple myeloma with bortezomib-lenalidomide-dexamethasone (BLD).
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Drug Evaluation; Female; Hematologic Diseases; Humans; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Nervous System Diseases; Peripheral Blood Stem Cell Transplantation; Pyrazines; Remission Induction; Retrospective Studies; Thalidomide; Time Factors; Transplantation, Autologous | 2010 |
Frontline regimens for multiple myeloma patients.
Topics: Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Design; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide | 2010 |
Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p).
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chemotherapy, Adjuvant; Chromosome Deletion; Chromosomes, Human, Pair 14; Chromosomes, Human, Pair 17; Chromosomes, Human, Pair 4; Dexamethasone; Disease-Free Survival; Doxorubicin; Female; France; Hematopoietic Stem Cell Transplantation; Humans; In Situ Hybridization, Fluorescence; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloablative Agonists; Neoadjuvant Therapy; Prospective Studies; Protease Inhibitors; Pyrazines; Time Factors; Translocation, Genetic; Treatment Outcome; Vincristine | 2010 |
Durable complete remission of primary plasma cell leukemia with the bortezomib plus melphalan and prednisone (VMP) regimen.
Topics: Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Leukemia, Plasma Cell; Melphalan; Prednisolone; Pyrazines; Remission Induction | 2010 |
Bortezomib added to high-dose melphalan as pre-transplant conditioning is safe in patients with heavily pre-treated multiple myeloma.
Topics: Adult; Aged; Boronic Acids; Bortezomib; Hematopoietic Stem Cell Transplantation; Humans; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Recurrence; Retrospective Studies; Transplantation Conditioning; Transplantation, Autologous | 2011 |
Optimising bortezomib in newly diagnosed multiple myeloma.
Topics: Age Factors; Aged; Angiogenesis Inhibitors; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Melphalan; Multiple Myeloma; Prednisone; Protease Inhibitors; Pyrazines; Randomized Controlled Trials as Topic; Risk Assessment; Risk Factors; Thalidomide; Time Factors; Treatment Outcome | 2010 |
First-line treatment of elderly multiple myeloma patients.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials, Phase III as Topic; Humans; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Thalidomide | 2010 |
De novo AL amyloidosis in the kidney allograft.
Topics: Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Hematopoietic Stem Cell Transplantation; Humans; Kidney Transplantation; Male; Melphalan; Middle Aged; Prednisone; Proteinuria; Pyrazines; Remission Induction; Treatment Outcome | 2011 |
Recent advances in myeloma treatment.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Lenalidomide; Medical Oncology; Melphalan; Multiple Myeloma; Oligopeptides; Prednisone; Pyrazines; Quality of Life; Salvage Therapy; Stem Cell Transplantation; Thalidomide | 2011 |
[A case of aggressive multiple myeloma].
Topics: Antineoplastic Combined Chemotherapy Protocols; Autopsy; Biopsy; Boronic Acids; Bortezomib; Drug Resistance, Neoplasm; Fatal Outcome; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Invasiveness; Prednisolone; Pyrazines | 2011 |
Spontaneous autologous graft-versus-host disease in plasma cell myeloma autograft recipients: flow cytometric analysis of hematopoietic progenitor cell grafts.
Topics: Acute Disease; Adrenal Cortex Hormones; Adult; Aged; Biomarkers; Boronic Acids; Bortezomib; Case-Control Studies; Cytokine Receptor gp130; Female; GATA2 Transcription Factor; Graft vs Host Disease; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cells; Humans; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Pyrazines; Receptors, CXCR4; T-Lymphocyte Subsets; Thalidomide; Transplantation, Autologous | 2011 |
Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion.
Topics: Animals; Antineoplastic Agents, Alkylating; Bone Marrow Cells; Boronic Acids; Bortezomib; Cadherins; Cell Adhesion; Cell Line, Tumor; Cell Movement; Chemokine CXCL12; Coculture Techniques; Drug Resistance, Neoplasm; Fibronectins; Focal Adhesion Kinase 1; Gene Knockdown Techniques; Gene Silencing; Humans; Integrin beta Chains; Melphalan; Mice; Multiple Myeloma; Neoplasm Invasiveness; Neoplasm Transplantation; Phosphorylation; Proto-Oncogene Proteins c-maf; Pyrazines; rac1 GTP-Binding Protein; src-Family Kinases; Stem Cell Transplantation; Sumoylation; Transcription Factor RelA; Transplantation, Autologous; Transplantation, Heterologous; Vascular Endothelial Growth Factor A | 2011 |
History of multiple myeloma.
Topics: Adrenal Cortex Hormones; Alkylating Agents; Bence Jones Protein; Boronic Acids; Bortezomib; History, 19th Century; History, Ancient; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Paraproteinemias; Prednisone; Proteinuria; Pyrazines; Stem Cell Transplantation; Thalidomide; Urethane | 2011 |
Salvage therapy with lenalidomide and dexamethasone in patients with advanced AL amyloidosis refractory to melphalan, bortezomib, and thalidomide.
Topics: Adult; Aged; Amyloidosis; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Drug Resistance, Neoplasm; Humans; Immunosuppressive Agents; Lenalidomide; Male; Melphalan; Middle Aged; Pyrazines; Recurrence; Salvage Therapy; Survival Rate; Thalidomide; Treatment Outcome | 2012 |
Heavy-chain amyloidosis in TGFBI-negative and gelsolin-negative atypical lattice corneal dystrophy.
Topics: Amyloid; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Corneal Dystrophies, Hereditary; Dexamethasone; DNA Mutational Analysis; Extracellular Matrix Proteins; Gelsolin; Glucocorticoids; Humans; Immunoglobulin Heavy Chains; Male; Mass Spectrometry; Melphalan; Microscopy, Confocal; Middle Aged; Mutation; Nephrotic Syndrome; Paraproteinemias; Pyrazines; Sequence Analysis, Protein; Transforming Growth Factor beta | 2011 |
The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells.
Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Benzamides; Blotting, Western; Bone Marrow; Boronic Acids; Bortezomib; Cell Cycle; Cell Proliferation; Cells, Cultured; Extracellular Signal-Regulated MAP Kinases; Humans; Interleukin-6; Janus Kinase 1; Melphalan; Multiple Myeloma; Phosphorylation; Pyrazines; Pyrimidines; Signal Transduction; STAT3 Transcription Factor; Stromal Cells | 2011 |
Consolidation with bortezomib and dexamethasone following risk-adapted melphalan and stem cell transplant in systemic AL amyloidosis.
Topics: Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Humans; Melphalan; Pyrazines; Stem Cell Transplantation | 2011 |
Cardiac amyloidosis: a treatable disease, often overlooked.
Topics: Adrenergic beta-Antagonists; Amyloidosis; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Boronic Acids; Bortezomib; Calcium Channel Blockers; Dexamethasone; Diuretics; Drug Therapy, Combination; Female; Heart Failure; Humans; Lenalidomide; Melphalan; Middle Aged; Myocardium; Prealbumin; Pyrazines; Severity of Illness Index; Stem Cell Transplantation; Thalidomide; Treatment Outcome | 2011 |
[Pneumonia and Rothia dentocariosa].
Topics: Actinomycetales Infections; Amoxicillin; Anti-Bacterial Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Immunocompromised Host; Melphalan; Micrococcaceae; Middle Aged; Multiple Myeloma; Pneumonia, Bacterial; Pyrazines | 2011 |
Frontline chemotherapy with bortezomib-containing combinations improves response rate and survival in primary plasma cell leukemia: a retrospective study from GIMEMA Multiple Myeloma Working Party.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Disease-Free Survival; Doxorubicin; Female; Humans; Kaplan-Meier Estimate; Leukemia, Plasma Cell; Male; Melphalan; Middle Aged; Prednisone; Pyrazines; Retrospective Studies; Thalidomide; Treatment Outcome; Vincristine | 2012 |
Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma.
Topics: Adult; Aged; Antineoplastic Agents; Bone Marrow Cells; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Female; Growth Differentiation Factor 15; Humans; Lenalidomide; Male; Melphalan; Mesenchymal Stem Cells; Middle Aged; Multiple Myeloma; Prognosis; Pyrazines; Signal Transduction; Thalidomide | 2012 |
Inhibition of cyclooxygenase-2 by tetramethylpyrazine and its effects on A549 cell invasion and metastasis.
Topics: Adenocarcinoma; Animals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclooxygenase 2 Inhibitors; Dinoprostone; Female; Humans; Immunoglobulin G; Lung Neoplasms; Matrix Metalloproteinase 2; Melphalan; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Invasiveness; Pyrazines; Xenograft Model Antitumor Assays | 2012 |
Timing of the high-dose therapy in the area of new drugs.
Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Combined Modality Therapy; Humans; Melphalan; Multiple Myeloma; Pyrazines; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous | 2011 |
[Current perspectives in the treatment of multiple myeloma - news and views].
Topics: Age Factors; Aged; Antineoplastic Agents; Boronic Acids; Bortezomib; Dexamethasone; Humans; Melphalan; Multiple Myeloma; Prognosis; Pyrazines; Renal Insufficiency; Risk Factors; Stem Cell Transplantation; Transplantation, Homologous | 2012 |
Multiple myeloma: treatment evolution.
Topics: Aged; Antineoplastic Agents; Boronic Acids; Bortezomib; Humans; Immunologic Factors; Immunosuppressive Agents; Lenalidomide; Melphalan; Multiple Myeloma; Proteasome Inhibitors; Pyrazines; Stem Cell Transplantation; Thalidomide; Young Adult | 2012 |
[Immunomodulatory drugs in the treatment of primary systemic light chain amyloidosis].
Topics: Amyloidosis; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Drug Combinations; Drug Therapy, Combination; Humans; Immunoglobulin Light Chains; Immunoglobulin Light-chain Amyloidosis; Immunologic Factors; Lenalidomide; Melphalan; Prednisone; Pyrazines; Thalidomide | 2012 |
Cytomegalovirus reactivation following autologous peripheral blood stem cell transplantation for multiple myeloma in the era of novel chemotherapeutics and tandem transplantation.
Topics: Aged; Antiviral Agents; Boronic Acids; Bortezomib; Cytomegalovirus; Cytomegalovirus Infections; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloablative Agonists; Peripheral Blood Stem Cell Transplantation; Pyrazines; Retrospective Studies; Risk Factors; Thalidomide; Transplantation Conditioning; Transplantation, Autologous; Viral Load; Viremia; Virus Activation | 2012 |
The role of novel agents on the reversibility of renal impairment in newly diagnosed symptomatic patients with multiple myeloma.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Doxorubicin; Female; Follow-Up Studies; Glomerular Filtration Rate; Humans; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Prognosis; Pyrazines; Renal Insufficiency; Survival Rate; Thalidomide; Vincristine | 2013 |
[A case of adult primitive neuroectodermal tumor(PNET)with multiple lung metastases effectively treated with ADM, IFM(AI)regimen].
Topics: Antineoplastic Combined Chemotherapy Protocols; Biopsy, Needle; Boronic Acids; Bortezomib; Doxorubicin; Head and Neck Neoplasms; Humans; Lung Neoplasms; Male; Melphalan; Middle Aged; Mitolactol; Mitomycins; Neuroectodermal Tumors, Primitive; Pyrazines; Salvage Therapy; Suicide; Tomography, X-Ray Computed | 2012 |
Cutaneous amyloid elastosis revealing multiple myeloma with systemic amyloidosis.
Topics: Aged; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Biopsy; Boronic Acids; Bortezomib; Dexamethasone; Diagnostic Errors; Elastic Tissue; Fatal Outcome; Female; Humans; Melphalan; Multiple Myeloma; Predictive Value of Tests; Pseudoxanthoma Elasticum; Pyrazines; Skin; Treatment Outcome | 2013 |
How to select among available options for the treatment of multiple myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Disease-Free Survival; Dose-Response Relationship, Radiation; Humans; Lenalidomide; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Randomized Controlled Trials as Topic; Stem Cell Transplantation; Thalidomide; Transplantation, Autologous; Treatment Outcome | 2012 |
Intracranial mass of multiple myeloma with good response to chemotherapy.
Topics: Antineoplastic Agents; Antineoplastic Agents, Alkylating; Boronic Acids; Bortezomib; Brain Neoplasms; Dexamethasone; Drug Therapy, Combination; Humans; Magnetic Resonance Imaging; Male; Melphalan; Multiple Myeloma; Pyrazines; Treatment Outcome | 2012 |
Schedule dependent cytotoxicity of bortezomib and melphalan in multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Administration Schedule; Drug Synergism; Humans; Melphalan; Multiple Myeloma; Pyrazines | 2013 |
Bortezomib with high dose melphalan conditioning for autologous transplant is safe and effective in patients with heavily pretreated and high risk multiple myeloma.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Autografts; Boronic Acids; Bortezomib; Female; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cell Transplantation; Humans; Maintenance Chemotherapy; Male; Melphalan; Middle Aged; Multiple Myeloma; Prognosis; Pyrazines; Retrospective Studies; Transplantation Conditioning; Treatment Outcome | 2013 |
[Diagnosis and treatment for plasma cell leukemia].
Topics: Antibodies, Monoclonal, Murine-Derived; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Glucocorticoids; Hematopoietic Stem Cell Transplantation; Humans; Lenalidomide; Leukemia, Plasma Cell; Melphalan; Pyrazines; Rituximab; Thalidomide | 2012 |
Intravenous injection of bortezomib, melphalan and dexamethasone in refractory and relapsed multiple myeloma.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease-Free Survival; Drug Administration Schedule; Drug-Related Side Effects and Adverse Reactions; Female; Follow-Up Studies; Humans; Injections, Intravenous; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Recurrence; Retrospective Studies; Treatment Outcome | 2013 |
Treatment of primary systemic amyloidosis (AL): role of intensive and standard therapy.
Topics: Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Biomarkers; Boronic Acids; Bortezomib; Hematopoietic Stem Cell Transplantation; Humans; Immunoglobulin Light Chains; Immunoglobulin Light-chain Amyloidosis; Lenalidomide; Melphalan; Myeloablative Agonists; Myocardium; Pyrazines; Steroids; Survival Analysis; Thalidomide; Transplantation, Autologous; Treatment Outcome | 2012 |
Rhabdomyolysis in a multiple myeloma patient secondary to concurrent treatment with lenalidomide and pravastatin and to lenalidomide alone.
Topics: Amines; Antineoplastic Combined Chemotherapy Protocols; Biomarkers; Boronic Acids; Bortezomib; Combined Modality Therapy; Creatine Kinase, MM Form; Cyclohexanecarboxylic Acids; Dexamethasone; Drug Synergism; Female; Gabapentin; gamma-Aminobutyric Acid; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Immunologic Factors; Kidney Diseases; Lenalidomide; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Polyneuropathies; Pravastatin; Pyrazines; Rhabdomyolysis; Thalidomide | 2012 |
The cost-effectiveness of initial treatment of multiple myeloma in the U.S. with bortezomib plus melphalan and prednisone versus thalidomide plus melphalan and prednisone or lenalidomide plus melphalan and prednisone with continuous lenalidomide maintenan
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Controlled Clinical Trials as Topic; Cost-Benefit Analysis; Female; Humans; Lenalidomide; Male; Markov Chains; Melphalan; Multiple Myeloma; Neoplasm Staging; Prednisone; Pyrazines; Thalidomide; United States | 2013 |
Bortezomib induced a phrenic palsy in a multiple myeloma patient.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Bone Density Conservation Agents; Boronic Acids; Bortezomib; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Diagnosis, Differential; Diphosphonates; gamma-Aminobutyric Acid; Humans; Imidazoles; Male; Melphalan; Multiple Myeloma; Nerve Compression Syndromes; Neuralgia; Phrenic Nerve; Prednisone; Pregabalin; Protease Inhibitors; Pyrazines; Respiratory Paralysis; Zoledronic Acid | 2013 |
Characterization of a novel mouse model of multiple myeloma and its use in preclinical therapeutic assessment.
Topics: Animals; Antineoplastic Agents; Bone Marrow; Boronic Acids; Bortezomib; Disease Models, Animal; Gene Expression; Genes, Reporter; Graft Survival; Humans; Injections; Luciferases; Luminescent Measurements; Magnetic Resonance Imaging; Melphalan; Mice; Mice, Inbred NOD; Mice, SCID; Multiple Myeloma; Neoplasm Transplantation; Paraproteins; Plasma Cells; Pyrazines; Syndecan-1; Tibia; Tumor Microenvironment | 2013 |
Allogeneic hematopoietic cell transplantation for consolidation of VGPR or CR for newly diagnosed multiple myeloma.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cohort Studies; Female; Graft vs Host Disease; Hematopoietic Stem Cell Transplantation; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Quality of Life; Remission Induction; Retrospective Studies; Transplantation Chimera; Transplantation Conditioning; Transplantation, Homologous; Vidarabine | 2013 |
Role of high-dose melphalan with autologous stem cell transplantation in multiple myeloma patients receiving botezomib-containing induction therapy.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Hematopoietic Stem Cell Transplantation; Humans; Induction Chemotherapy; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Staging; Pyrazines; Risk Factors; Transplantation, Autologous; Treatment Outcome | 2013 |
The response to second-line induction with bortezomib and dexamethasone is predictive of long-term outcomes prior to high-dose chemotherapy with autologous stem cell transplantation for multiple myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chromosome Aberrations; Combined Modality Therapy; Cyclophosphamide; Dexamethasone; Disease-Free Survival; Doxorubicin; Drug Administration Schedule; Female; Forecasting; Hematologic Diseases; Humans; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Peripheral Blood Stem Cell Transplantation; Peripheral Nervous System Diseases; Prednisone; Pyrazines; Remission Induction; Retrospective Studies; Transplantation, Autologous; Treatment Outcome; Vincristine | 2013 |
Therapeutic effects of lenalidomide on hemorrhagic intestinal myeloma-associated AL amyloidosis.
Topics: Aged; Amyloid; Amyloidosis; Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Blood Transfusion; Bone Diseases; Boronic Acids; Bortezomib; Carpal Tunnel Syndrome; Dexamethasone; Disease Progression; Doxorubicin; Duodenal Diseases; Female; Femur Head; Fractures, Spontaneous; Gastrointestinal Hemorrhage; Hip Fractures; Humans; Jejunal Diseases; Lenalidomide; Melphalan; Multiple Myeloma; Osteolysis; Prednisolone; Pyrazines; Thalidomide; Vincristine | 2013 |
Correlation between burden of 17P13.1 alteration and rapid escape to plasma cell leukaemia in multiple myeloma.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chromosomes, Human, Pair 13; Chromosomes, Human, Pair 17; Dexamethasone; Disease Progression; Female; Genes, p53; Humans; In Situ Hybridization, Fluorescence; Lenalidomide; Leukemia, Plasma Cell; Male; Melphalan; Multiple Myeloma; Prednisone; Pyrazines; Sequence Deletion; Thalidomide; Treatment Outcome; Trisomy | 2013 |
10 years of experience with thalidomide in multiple myeloma patients: report of the Czech Myeloma Group.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Female; Follow-Up Studies; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Staging; Prednisone; Prognosis; Pyrazines; Remission Induction; Retrospective Studies; Survival Rate; Thalidomide; Time Factors; Young Adult | 2013 |
Multiple myeloma: a descriptive study of 217 Egyptian patients.
Topics: Adrenal Cortex Hormones; Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Cytarabine; Dexamethasone; Egypt; Female; Hospitals, Urban; Humans; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Myeloma Proteins; Pyrazines; Retrospective Studies; Severity of Illness Index; Thalidomide; Vincristine | 2014 |
Waldeström macroglobulinaemia relapsing with focal bone disease and achieving major response with single-agent zoledronic acid.
Topics: Antibodies, Monoclonal, Murine-Derived; Antineoplastic Combined Chemotherapy Protocols; Bone Density Conservation Agents; Bone Resorption; Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Diphosphonates; Hematopoietic Stem Cell Transplantation; Humans; Imidazoles; Male; Melphalan; Middle Aged; Multimodal Imaging; Osteolysis; Positron-Emission Tomography; Pyrazines; Recurrence; Remission Induction; Rituximab; Tomography, X-Ray Computed; Waldenstrom Macroglobulinemia; Zoledronic Acid | 2013 |
Transplants for the elderly in myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Lenalidomide; Male; Melphalan; Multiple Myeloma; Pyrazines; Stem Cell Transplantation; Thalidomide | 2013 |
Myeloma presenting during pregnancy.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cesarean Section; Chemoradiotherapy; Cisplatin; Combined Modality Therapy; Contraindications; Cyclophosphamide; Cytarabine; Dexamethasone; Doxorubicin; Etoposide; Fatal Outcome; Female; Hematopoietic Stem Cell Transplantation; Humans; Hypercalcemia; Idarubicin; Infant, Newborn; Lenalidomide; Male; Melphalan; Methylprednisolone; Multiple Myeloma; Myeloma Proteins; Osteolysis; Plasmacytoma; Postpartum Period; Pregnancy; Pregnancy Complications, Neoplastic; Pregnancy Outcome; Pyrazines; Remission Induction; Spinal Cord Compression; Thalidomide; Thoracic Vertebrae; Transplantation, Autologous | 2014 |
Bortezomib administered subcutaneously is well tolerated in bortezomib-based combination regimens used in patients with multiple myeloma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Female; Humans; Injections, Subcutaneous; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Pyrazines; Retrospective Studies; Thalidomide; Treatment Outcome | 2013 |
[Attainment of complete hematological remission is crucial for extended survival of AL amyloidosis patients with cardiac involvement].
Topics: Aged; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclophosphamide; Dexamethasone; Female; Heart Neoplasms; Humans; Immunoglobulin Light-chain Amyloidosis; Male; Melphalan; Middle Aged; Pyrazines; Remission Induction; Thalidomide; Treatment Outcome | 2013 |
Differential humoral responses against heat-shock proteins after autologous stem cell transplantation in multiple myeloma.
Topics: Adult; Aged; Antibodies, Neoplasm; Antibody Specificity; Antineoplastic Combined Chemotherapy Protocols; Autoantibodies; Autoantigens; Boronic Acids; Bortezomib; Chaperonin 60; Combined Modality Therapy; Disease-Free Survival; Enzyme-Linked Immunosorbent Assay; Female; Glucocorticoids; Hematopoietic Stem Cell Transplantation; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Humans; Male; Melphalan; Middle Aged; Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Neoplasm Proteins; Oligoclonal Bands; Pyrazines; Remission Induction; Thalidomide; Transplantation, Autologous | 2014 |
Bortezomib, melphalan, prednisone (VMP) versus melphalan, prednisone, thalidomide (MPT) in elderly newly diagnosed multiple myeloma patients: A retrospective case-matched study.
Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Case-Control Studies; Disease-Free Survival; Drug Evaluation; Female; Hematologic Diseases; Humans; Kaplan-Meier Estimate; Male; Melphalan; Multiple Myeloma; Nervous System Diseases; Prednisone; Prognosis; Proportional Hazards Models; Pyrazines; Randomized Controlled Trials as Topic; Retrospective Studies; Thalidomide; Treatment Outcome | 2014 |
Post-transplantation consolidation and maintenance therapy with lenalidomide for Japanese patients with multiple myeloma.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Female; Hematopoietic Stem Cell Transplantation; Humans; Japan; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Positron-Emission Tomography; Pyrazines; Thalidomide; Transplantation Conditioning | 2013 |
Romidepsin overcomes cell adhesion-mediated drug resistance in multiple myeloma cells.
Topics: Boronic Acids; Bortezomib; Cell Adhesion; Cell Line; Depsipeptides; Dexamethasone; Down-Regulation; Drug Resistance, Neoplasm; Histone Deacetylase Inhibitors; Humans; Integrin alpha4; Integrin beta1; Melphalan; Multiple Myeloma; Pyrazines; RNA, Messenger; RNA, Neoplasm; Syndecan-1 | 2014 |
Comparative cost-effectiveness models for the treatment of multiple myeloma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cost-Benefit Analysis; Disease Progression; Humans; Melphalan; Models, Economic; Multiple Myeloma; Prednisolone; Pyrazines; Survival Analysis; Thalidomide; United Kingdom | 2014 |
Synthesis and anticancer activity of some 1,2,3-trisubstituted pyrazinobenzimidazole derivatives.
Topics: Acetophenones; Antineoplastic Agents; Benzimidazoles; Benzylamines; Carbonates; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cisplatin; Dose-Response Relationship, Drug; Drug Design; Humans; Melphalan; Molecular Structure; Potassium; Pyrazines; Structure-Activity Relationship | 2014 |
A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib.
Topics: Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Proliferation; Cells, Cultured; Dendritic Cells; Humans; Lenalidomide; Lymphocyte Activation; Melphalan; Mice; Mice, SCID; Multiple Myeloma; Oligodeoxyribonucleotides; Pyrazines; T-Lymphocytes; Thalidomide; Toll-Like Receptor 9 | 2014 |
Limited value of the international staging system for predicting long-term outcome of transplant-ineligible, newly diagnosed, symptomatic multiple myeloma in the era of novel agents.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Female; Humans; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Staging; Prednisolone; Prognosis; Pyrazines; Retreatment; Salvage Therapy; Thalidomide; Treatment Outcome | 2014 |
Induction bortezomib in Al amyloidosis followed by high dose melphalan and autologous stem cell transplantation: a single institution retrospective study.
Topics: Adult; Aged; Amyloidogenic Proteins; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cardiomyopathies; Cyclophosphamide; Dexamethasone; Disease-Free Survival; Drug Administration Schedule; Female; Hematopoietic Stem Cell Transplantation; Humans; Immunoglobulin Light Chains; Kaplan-Meier Estimate; Kidney Diseases; Lenalidomide; Male; Melphalan; Middle Aged; Myeloablative Agonists; Proteasome Inhibitors; Pyrazines; Remission Induction; Retrospective Studies; Thalidomide; Transplantation Conditioning; Transplantation, Autologous; Treatment Outcome | 2014 |
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.
Topics: Animals; Boronic Acids; Bortezomib; Cell Line, Tumor; DNA Copy Number Variations; Doxorubicin; Heterografts; Humans; Immunophenotyping; Melphalan; Mice, SCID; Multiple Myeloma; Neoplastic Stem Cells; Phenotype; Plasma Cells; Precursor Cells, B-Lymphoid; Pyrazines; Syndecan-1 | 2014 |
Expression of cereblon protein assessed by immunohistochemicalstaining in myeloma cells is associated with superior response of thalidomide- and lenalidomide-based treatment, but not bortezomib-based treatment, in patients with multiple myeloma.
Topics: Adaptor Proteins, Signal Transducing; Aged; Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Bone Marrow Examination; Boronic Acids; Bortezomib; Dexamethasone; Female; Follow-Up Studies; Gene Expression Profiling; Humans; Lenalidomide; Male; Melphalan; Middle Aged; Multiple Myeloma; Neoplasm Proteins; Neoplastic Stem Cells; Paraffin Embedding; Peptide Hydrolases; Prednisolone; Pyrazines; Salvage Therapy; Survival Analysis; Syndecan-1; Thalidomide; Treatment Outcome; Ubiquitin-Protein Ligases | 2014 |
Clinical features, outcome, and prognostic factors for survival and evolution to multiple myeloma of solitary plasmacytomas: a report of the Greek myeloma study group in 97 patients.
Topics: Adolescent; Adult; Aged; Aged, 80 and over; Anthracyclines; Antineoplastic Combined Chemotherapy Protocols; Bone Neoplasms; Boronic Acids; Bortezomib; Chemotherapy, Adjuvant; Dexamethasone; Disease Progression; Female; Greece; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Multivariate Analysis; Neoplasm Recurrence, Local; Plasmacytoma; Prognosis; Pyrazines; Remission Induction; Retrospective Studies; Survival Analysis; Treatment Outcome | 2014 |
Bortezomib cumulative dose, efficacy, and tolerability with three different bortezomib-melphalan-prednisone regimens in previously untreated myeloma patients ineligible for high-dose therapy.
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Disease Progression; Humans; Melphalan; Multiple Myeloma; Peripheral Nervous System Diseases; Prednisone; Pyrazines; Retrospective Studies; Treatment Outcome | 2014 |
Impacts of new agents for multiple myeloma on development of secondary myelodysplastic syndrome and acute myeloid leukemia.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Boronic Acids; Bortezomib; Chromosome Aberrations; Female; Humans; Immunosuppressive Agents; Lenalidomide; Leukemia, Myeloid, Acute; Male; Melphalan; Middle Aged; Multiple Myeloma; Myelodysplastic Syndromes; Neoplasms, Second Primary; Pyrazines; Retrospective Studies; Thalidomide; Time Factors | 2014 |
Clinical analysis of six cases of multiple myeloma first presenting with coagulopathy.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Blood Sedimentation; Boronic Acids; Bortezomib; Coagulants; Coagulation Protein Disorders; Dexamethasone; Doxorubicin; Female; Hematoma; Hematuria; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Retrospective Studies; Thalidomide | 2014 |
Sixteenth biannual report of the Cochrane Haematological Malignancies Group: focus on Non-Hodgkin's lymphoma.
Topics: Antibodies, Monoclonal, Murine-Derived; Antineoplastic Combined Chemotherapy Protocols; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Carmustine; Cyclophosphamide; Cytarabine; Doxorubicin; Drug Administration Schedule; Etoposide; Hematologic Neoplasms; Humans; Lymphoma, Follicular; Lymphoma, Large B-Cell, Diffuse; Lymphoma, Mantle-Cell; Lymphoma, Non-Hodgkin; Melphalan; Nitriles; Nitrogen Mustard Compounds; Prednisone; Primary Myelofibrosis; Pyrazines; Pyrazoles; Pyrimidines; Quality of Life; Randomized Controlled Trials as Topic; Rituximab; Vincristine | 2014 |
Report of 6 cases of large granular lymphocytic leukemia and plasma cell dyscrasia.
Topics: Aged; Aged, 80 and over; Anemia; Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Causality; Cladribine; Combined Modality Therapy; Cyclophosphamide; Disease Progression; Female; Humans; Lenalidomide; Leukemia, Large Granular Lymphocytic; Male; Melphalan; Methotrexate; Middle Aged; Multiple Myeloma; Neutropenia; Paraproteinemias; Peripheral Blood Stem Cell Transplantation; Prednisone; Protease Inhibitors; Pyrazines; Registries; Retrospective Studies; Thalidomide | 2014 |
Melphalan and dexamethasone with or without bortezomib in newly diagnosed AL amyloidosis: a matched case-control study on 174 patients.
Topics: Aged; Amyloidosis; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Case-Control Studies; Dexamethasone; Humans; Immunoglobulin Light Chains; Melphalan; Middle Aged; Pyrazines; Treatment Outcome | 2014 |
Bortezomib-based chemotherapy regimens can improve response in newly diagnosed multiple myeloma patients with bcl-2 and survivin overexpression.
Topics: Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Doxorubicin; Female; Humans; Immunohistochemistry; Inhibitor of Apoptosis Proteins; Kaplan-Meier Estimate; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Prognosis; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Retrospective Studies; Survivin; Thalidomide; Vincristine | 2014 |
Copy number variations could predict the outcome of bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chromosomes, Human; DNA Copy Number Variations; Female; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Polymorphism, Single Nucleotide; Prednisone; Pyrazines | 2015 |
Extramedullary progression of multiple myeloma despite concomitant medullary response to multiple combination therapies and autologous transplant: a case report.
Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzoquinones; Biopsy; Boronic Acids; Bortezomib; Combined Modality Therapy; Dexamethasone; Diagnosis, Differential; Disease Progression; Doxorubicin; Fatal Outcome; Hematopoietic Stem Cell Transplantation; Humans; Lactams, Macrocyclic; Male; Melphalan; Middle Aged; Multiple Myeloma; Pyrazines; Recurrence; Thalidomide; Transplantation, Autologous | 2014 |
Bortezomib, melphalan, and prednisolone combination chemotherapy for newly diagnosed light chain (AL) amyloidosis.
Topics: Aged; Amyloidosis; Boronic Acids; Bortezomib; Drug Therapy, Combination; Female; Humans; Male; Melphalan; Middle Aged; Prednisolone; Pyrazines; Retrospective Studies | 2014 |
Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer.
Topics: AMP-Activated Protein Kinases; Animals; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Boronic Acids; Bortezomib; Cell Line, Tumor; Colonic Neoplasms; Drug Synergism; Enzyme Activation; Humans; Kinetics; Melphalan; Membrane Proteins; Mice; Mitochondria; Phosphorylation; Phosphoserine; Pyrazines; Sirolimus | 2014 |
Treatment of Non-transplant patients with multiple myeloma: routine treatment by office-based haematologists in Germany--data from the prospective Tumour Registry Lymphatic Neoplasms (TLN).
Topics: Adult; Aged; Aged, 80 and over; Ambulatory Care; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Female; Follow-Up Studies; Germany; Glucocorticoids; Hematology; Humans; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Prospective Studies; Pyrazines; Registries | 2014 |
[Complications and managements in treatment of melphalan, prednisone and new agents].
Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Melphalan; Molecular Targeted Therapy; Multiple Myeloma; Peripheral Nervous System Diseases; Prednisone; Pyrazines; Thalidomide | 2015 |
Risk stratification model in elderly patients with multiple myeloma: clinical role of magnetic resonance imaging combined with international staging system and cytogenetic abnormalities.
Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Chromosome Aberrations; Cyclophosphamide; Dexamethasone; Disease-Free Survival; Humans; Magnetic Resonance Imaging; Male; Melphalan; Middle Aged; Models, Biological; Multiple Myeloma; Neoplasm Staging; Prednisone; Pyrazines; Radiography; Retrospective Studies; Risk Factors; Survival Rate; Thalidomide | 2015 |
Myeloid sarcoma as the initial presentation of chronic myelogenous leukemia, medullary chronic phase in era of tyrosine kinase inhibitors: A report of 11 cases.
Topics: Adult; Aged; Antineoplastic Agents; Boronic Acids; Bortezomib; Female; Humans; Karyotyping; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Male; Melphalan; Middle Aged; Multiple Myeloma; Prednisone; Prognosis; Protein Kinase Inhibitors; Pyrazines; Sarcoma, Myeloid; Survival Analysis | 2015 |
Initial testing (stage 1) of M6620 (formerly VX-970), a novel ATR inhibitor, alone and combined with cisplatin and melphalan, by the Pediatric Preclinical Testing Program.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Ataxia Telangiectasia Mutated Proteins; Cell Line, Tumor; Cisplatin; Female; Humans; Isoxazoles; Melphalan; Mice; Mice, SCID; Neoplasms, Experimental; Protein Kinase Inhibitors; Pyrazines; Xenograft Model Antitumor Assays | 2018 |