Page last updated: 2024-08-21

pyrazines and iloprost

pyrazines has been researched along with iloprost in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's4 (66.67)24.3611
2020's2 (33.33)2.80

Authors

AuthorsStudies
Clozel, M; Ernst, R; Hess, P; Morrison, K; Studer, R1
Benyahia, C; Boukais, K; Clapp, L; Danel, C; Fabre, A; Gomez, I; Leséche, G; Longrois, D; Norel, X; Silverstein, A1
Clapp, LH; Ledwozyw, A; Orie, NN; Whittle, BJ; Williams, DJ1
Clozel, M; Gatfield, J; Gnerre, C; Hess, P; Iglarz, M; Menyhart, K; Monnier, L; Morrison, K; Nayler, O; Wanner, D1
Benza, RL; Raina, A; Verlinden, NJ; Walter, C1
Akashi, K; Arinobu, Y; Ayano, M; Fukata, M; Higashioka, K; Horiuchi, T; Imabayashi, K; Kashiwado, Y; Kawano, S; Kimoto, Y; Mitoma, H; Niiro, H; Ono, N; Saiki, C; Yokoyama, T1

Other Studies

6 other study(ies) available for pyrazines and iloprost

ArticleYear
Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 335, Issue:1

    Topics: Acetamides; Animals; Dinoprostone; Dose-Response Relationship, Drug; Epoprostenol; Gastric Emptying; Gastrointestinal Transit; Humans; Iloprost; Male; Muscle Contraction; Pulmonary Artery; Pyrazines; Rats; Receptors, Epoprostenol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stomach

2010
A comparative study of PGI2 mimetics used clinically on the vasorelaxation of human pulmonary arteries and veins, role of the DP-receptor.
    Prostaglandins & other lipid mediators, 2013, Volume: 107

    Topics: Acetates; Aged; Drug Evaluation, Preclinical; Epoprostenol; Female; Humans; Iloprost; In Vitro Techniques; Inhibitory Concentration 50; Male; Middle Aged; Molecular Mimicry; Pulmonary Artery; Pulmonary Veins; Pyrazines; Receptors, Epoprostenol; Receptors, Immunologic; Receptors, Prostaglandin; Receptors, Prostaglandin E, EP4 Subtype; Vasodilation; Vasodilator Agents

2013
Differential actions of the prostacyclin analogues treprostinil and iloprost and the selexipag metabolite, MRE-269 (ACT-333679) in rat small pulmonary arteries and veins.
    Prostaglandins & other lipid mediators, 2013, Volume: 106

    Topics: Acetamides; Acetates; Animals; Benzofurans; Benzyl Compounds; Epoprostenol; Female; Iloprost; Imidazoles; Male; Propionates; Pulmonary Artery; Pulmonary Veins; Pyrazines; Rats; Rats, Sprague-Dawley; Receptors, Epoprostenol; Vasodilation

2013
Selexipag Active Metabolite ACT-333679 Displays Strong Anticontractile and Antiremodeling Effects but Low
    The Journal of pharmacology and experimental therapeutics, 2017, Volume: 362, Issue:1

    Topics: Acetamides; Acetates; Animals; beta-Arrestins; Cell Proliferation; CHO Cells; Contractile Proteins; Cricetinae; Cricetulus; Cyclic AMP; Epoprostenol; Extracellular Matrix; Humans; Hypertension, Pulmonary; Iloprost; Male; Muscle Contraction; Muscle Relaxation; Pyrazines; Rats; Rats, Inbred SHR; Rats, Wistar; Receptors, Epoprostenol

2017
A Case Report of a Patient With Pulmonary Arterial Hypertension Transitioned From Inhaled Iloprost to Selexipag.
    Journal of pharmacy practice, 2021, Volume: 34, Issue:6

    Topics: Acetamides; Antihypertensive Agents; Female; Humans; Hypertension, Pulmonary; Iloprost; Middle Aged; Pulmonary Arterial Hypertension; Pyrazines

2021
Successful transition from intravenous epoprostenol to oral selexipag and inhaled iloprost in a case of severe pulmonary arterial hypertension associated with systemic lupus erythematosus.
    Modern rheumatology case reports, 2022, 06-24, Volume: 6, Issue:2

    Topics: Acetamides; Adult; Epoprostenol; Female; Humans; Hypertension, Pulmonary; Iloprost; Lupus Erythematosus, Systemic; Pulmonary Arterial Hypertension; Pyrazines; Quality of Life

2022