Page last updated: 2024-08-21

pyrazines and carfilzomib

pyrazines has been researched along with carfilzomib in 70 studies

Research

Studies (70)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's9 (12.86)29.6817
2010's61 (87.14)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bruserud, O; Døskeland, AP; Ersvaer, E; Gjertsen, BT; Hatfield, K; Lorens, JB; Ryningen, A; Stapnes, C1
Bennett, MK; Chanan-Khan, AA; Chen, Q; Demo, SD; Kuhn, DJ; Orlowski, RZ; Shenk, KD; Strader, JS; Sun, CM; van Leeuwen, FW; Voorhees, PM1
Aujay, MA; Bennett, MK; Buchholz, TJ; Dajee, M; Demo, SD; Ho, MN; Jiang, J; Kirk, CJ; Laidig, GJ; Lewis, ER; Molineaux, CJ; Parlati, F; Shenk, KD; Smyth, MS; Sun, CM; Vallone, MK; Woo, TM1
Lonial, S1
Fuchs, O; Kuzelova, K; Marinov, I; Provaznikova, D; Spicka, I1
Boise, LH; Gutman, D; Morales, AA1
Gerecitano, J1
Orlowski, RZ; Shah, JJ1
Stewart, AK1
Dasmahapatra, G; Dent, P; Fisher, RI; Friedberg, J; Grant, S; Kramer, L; Lembersky, D1
Schots, R1
Aujay, M; Azab, AK; Azab, F; Ghobrial, IM; Issa, GC; Liu, Y; Maiso, P; Morgan, B; Ngo, HT; Quang, P; Roccaro, AM; Sacco, A; Zhang, Y1
Anderl, JL; Arastu-Kapur, S; Ball, AJ; Bennett, MK; Driessen, C; Kirk, CJ; Kraus, M; Lee, SJ; Muchamuel, T; Parlati, F; Shenk, KD1
Aujay, M; Bahlis, N; Belch, A; Berno, T; Hetherington, KL; Jagannath, S; Jakubowiak, A; Keith Stewart, A; Kukreti, V; Lonial, S; Orlowski, RZ; Siegel, D; Singhal, S; Somlo, G; Tricot, G; Trudel, S; Vij, R; Wang, L; Zangari, M; Zhan, F1
Khan, ML; Stewart, AK1
Kay, LE; Ruschak, AM; Schimmer, AD; Slassi, M1
Britton, M; Downey, SL; Filippov, DV; Florea, BI; Kisselev, AF; Mirabella, AC; Overkleeft, HS; Pletnev, AA; Shabaneh, TB; Verdoes, M1
Anolik, JH; Barnard, J; Conley, T; Goldman, BI; Ichikawa, HT; Jiang, J; Kirk, CJ; Lee, S; Looney, RJ; Muchamuel, T; Nevarez, S; Owen, T1
Appel, A1
Gallastegui, N; Groll, M1
Alsina, M; Bahlis, NJ; Belch, A; Gabrail, NY; Jagannath, S; Jakubowiak, AJ; Kaufman, JL; Kukreti, V; Kunkel, LA; Lee, P; Lonial, S; Matous, JV; McDonagh, KT; Orlowski, RZ; Reu, FJ; Rosen, P; Sebag, M; Siegel, DS; Stewart, AK; Vesole, DH; Vij, R; Wang, M; Wear, SM; Wong, AF1
Grant, S; Holkova, B1
Ao, L; Jang, ER; Kim, D; Kim, K; Kim, KB; Lee, DM; Lee, W; Wu, Y1
Blanco, JF; Collins, L; Garayoa, M; Garcia-Gomez, A; Hornick, MC; Hurchla, MA; Kirk, CJ; Li, A; Ocio, EM; Pandiella, A; Piwnica-Worms, D; San Miguel, JF; Tomasson, MH; Vij, R; Weilbaecher, KN1
Bahlis, N; Belch, A; Jagannath, S; Jakubowiak, AJ; Kunkel, LA; McDonagh, K; Siegel, DS; Stewart, AK; Vij, R; Wang, M; Wear, S; Wong, AF1
Bladé, J; Dimopoulos, MA; Kastritis, E1
Arima, N; Kawada, H1
Badros, A; Khan, RZ1
Chan, ET; DeLancey, HM; Freilino, ML; Grandis, JR; Johnson, DE; Kirk, CJ; Li, C; Thomas, SM; Zang, Y1
Bahlis, N; Jagannath, S; Jakubowiak, AJ; Kunkel, LA; Lonial, S; Orlowski, RZ; Reiman, T; Siegel, DS; Somlo, G; Stewart, AK; Trudel, S; Vij, R; Wong, A1
Rajkumar, SV1
Alsina, M; Anderson, KC; Bensinger, W; Biermann, JS; Cohen, AD; Devine, S; Djulbegovic, B; Faber, EA; Gasparetto, C; Hernandez-Illizaliturri, F; Huff, CA; Kassim, A; Krishnan, AY; Kumar, R; Liedtke, M; Meredith, R; Raje, N; Schriber, J; Shead, DA; Singhal, S; Somlo, G; Stockerl-Goldstein, K; Treon, SP; Weber, D; Yahalom, J; Yunus, F1
Abe, M; Fujii, S1
Goel, S; Lue, J; Mazumder, A1
Hu, Y; Wu, P; Zhang, J1
Claas, FH; Heidt, S; Mulder, A; Roelen, DL; Vergunst, M1
Mahindra, A; Saini, N1
Ahluwalia, R; Carson, KR; Cox, DP; Fiala, MA; Jaenicke, M; Moliske, CC; Stockerl-Goldstein, KE; Tomasson, MH; Trinkaus, KM; Vij, R; Wang, TF; Wildes, TM1
Czuczman, MS; Czuczman, NM; Gu, JJ; Hernandez-Ilizaliturri, FJ; Kaufman, GP; Mavis, C; Skitzki, JJ1
Bringhen, S; Cerrato, C; Magarotto, V; Palumbo, A; Pautasso, C1
Klánová, M; Špička, I1
Sommer, T; Wolf, DH1
Lentzsch, S; Schecter, J1
Anderson, KC; Mitsiades, CS; Ocio, EM; Orlowski, RZ1
Berno, T; Kamalakar, A; Pappas, L; Suva, LJ; Tricot, G; Xu, H; Yang, Y; Yoon, D; Zangari, M; Zeng, M1
Beck, P; Cui, H; Dubiella, C; Groll, M; Krüger, A; Schmidt, B; Stein, ML; Voss, C1
Anderl, J; Assaraf, YG; Blank, JL; Cloos, J; Jansen, G; Kaspers, GJ; Kirk, CJ; Niewerth, D; van de Ven, PM; van Meerloo, J; Zweegman, S1
Berenson, JR; Bessudo, A; Boccia, RV; Dichmann, R; Eshaghian, S; Gravenor, D; Hilger, JD; Nassir, Y; Patel-Donnelly, D; Stampleman, L; Swift, RA; Vescio, RA; Yellin, O1
Hata, T; Li, C; Two, AM1
Cavallo, F; Genadieva-Stavric, S; Palumbo, A1
Iida, S; Ri, M1
Johnson, DE; Kirk, CJ; Zang, Y1
Chung, DJ; Devlin, S; Giralt, SA; Hassoun, H; Hilden, P; Koehne, G; Landau, H; Lendvai, N; Lesokhin, AM; Redling, K; Schaffer, WL; Tsakos, I1
Itoh, K; Liu, T; Maruyama, A; Mimura, J; Ohyama, C; Okada, T; Sato, H; Ye, P1
Castro, LM; Dasgupta, S; Dulman, R; Ferro, ES; Fricker, LD; Schmidt, M; Yang, C1
Martin, TG1
Boise, LH; Lonial, S1
Vij, R1
Bories, C; Facon, T; Fouquet, G; Guidez, S; Herbaux, C; Javed, S; Leleu, X; Renaud, L1
Hobeika, L; Self, SE; Velez, JC1
Anderson, KC; Dimopoulos, MA; Moreau, P; Richardson, PG1
Groll, M; Heinemeyer, W; Huber, EM1
Mitsiades, CS1
Colson, K1
Chirgwin, JM; Suvannasankha, A1
Bay, JO1
Treon, SP1
Fenichel, MP1
Bader, J; Besse, L; de Bruin, G; Driessen, C; Geurink, PP; Kisselev, AF; Kraus, J; Kraus, M; Liu, N; Overkleeft, H1

Reviews

26 review(s) available for pyrazines and carfilzomib

ArticleYear
Practical considerations for multiple myeloma: an overview of recent data and current options.
    Clinical lymphoma & myeloma, 2008, Volume: 8 Suppl 4

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Drug Resistance, Neoplasm; Humans; Lenalidomide; Multiple Myeloma; Oligopeptides; Pyrazines; Remission Induction; Salvage Therapy; Thalidomide

2008
Antiproliferative and proapoptotic effects of proteasome inhibitors and their combination with histone deacetylase inhibitors on leukemia cells.
    Cardiovascular & hematological disorders drug targets, 2009, Volume: 9, Issue:1

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Enzyme Inhibitors; Histone Deacetylase Inhibitors; Humans; Lactones; Leukemia; Oligopeptides; Protease Inhibitors; Pyrazines; Pyrroles

2009
The future of small molecule inhibitors in lymphoma.
    Current oncology reports, 2009, Volume: 11, Issue:5

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Drug Discovery; Forecasting; Histone Deacetylases; Humans; Lymphoma; Oligopeptides; Protease Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines

2009
Proteasome inhibitors in the treatment of multiple myeloma.
    Leukemia, 2009, Volume: 23, Issue:11

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Humans; Lactones; Multiple Myeloma; Oligopeptides; Protease Inhibitors; Pyrazines; Pyrroles

2009
Novel therapies for relapsed myeloma.
    Hematology. American Society of Hematology. Education Program, 2009

    Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Administration Schedule; Drug Screening Assays, Antitumor; Drugs, Investigational; Heat-Shock Proteins; Histone Deacetylase Inhibitors; Humans; Immunologic Factors; Mice; Mice, Transgenic; Multiple Myeloma; Neoplasm Proteins; Nitrogen Mustard Compounds; Oligopeptides; Protease Inhibitors; Proteasome Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazines; Salvage Therapy; Thalidomide

2009
Novel proteasome inhibitors to overcome bortezomib resistance.
    Journal of the National Cancer Institute, 2011, Jul-06, Volume: 103, Issue:13

    Topics: Allosteric Site; Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Line, Tumor; Chloroquine; Clioquinol; Drug Resistance, Neoplasm; Humans; Hydroxyquinolines; Lactones; Neoplasms; Oligopeptides; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Pyrroles; Threonine; Ubiquitinated Proteins; Ubiquitination

2011
Proteasome inhibitors in mantle cell lymphoma.
    Best practice & research. Clinical haematology, 2012, Volume: 25, Issue:2

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Combined Modality Therapy; Drug Resistance, Neoplasm; Humans; Lymphoma, Mantle-Cell; Oligopeptides; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Recurrence; Signal Transduction; Survival Analysis

2012
Evolving chemotherapy options for the treatment of myeloma kidney: a 40-year perspective.
    Advances in chronic kidney disease, 2012, Volume: 19, Issue:5

    Topics: Acute Kidney Injury; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Doxorubicin; Humans; Lenalidomide; Multiple Myeloma; Oligopeptides; Pyrazines; Thalidomide

2012
[Update on treatment of multiple myeloma: including myeloma kidney and molecular targeting drugs].
    Nihon Jinzo Gakkai shi, 2012, Volume: 54, Issue:5

    Topics: Boronic Acids; Bortezomib; Drug Design; Humans; Immunologic Factors; Kidney Neoplasms; Lenalidomide; Molecular Targeted Therapy; Multiple Myeloma; Oligopeptides; Plasmacytoma; Pyrazines; Thalidomide

2012
Doublets, triplets, or quadruplets of novel agents in newly diagnosed myeloma?
    Hematology. American Society of Hematology. Education Program, 2012, Volume: 2012

    Topics: Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Therapy; Humans; Lenalidomide; Medical Oncology; Melphalan; Models, Biological; Multiple Myeloma; Oligopeptides; Prednisone; Pyrazines; Risk; Thalidomide; Treatment Outcome

2012
Carfilzomib (Kryprolis) for multiple myeloma.
    The Medical letter on drugs and therapeutics, 2012, Dec-24, Volume: 54, Issue:1406

    Topics: Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Approval; Drug Resistance, Neoplasm; Humans; Multiple Myeloma; Oligopeptides; Proteasome Endopeptidase Complex; Pyrazines

2012
Clinical and marketed proteasome inhibitors for cancer treatment.
    Current medicinal chemistry, 2013, Volume: 20, Issue:20

    Topics: Boron Compounds; Boronic Acids; Bortezomib; Glycine; Humans; Lactones; Neoplasms; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Pyrroles; Structure-Activity Relationship; Threonine

2013
Therapeutic strategies for the treatment of multiple myeloma.
    Discovery medicine, 2013, Volume: 15, Issue:83

    Topics: ADP-ribosyl Cyclase 1; Antineoplastic Agents; Boronic Acids; Bortezomib; Cytokines; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Homeostasis; Humans; Immune System; Immunotherapy; Lenalidomide; Multiple Myeloma; Oligopeptides; Prognosis; Protease Inhibitors; Pyrazines; Recurrence; Syndecan-1; Thalidomide

2013
The mechanism of action, pharmacokinetics, and clinical efficacy of carfilzomib for the treatment of multiple myeloma.
    Expert opinion on drug metabolism & toxicology, 2013, Volume: 9, Issue:10

    Topics: Boronic Acids; Bortezomib; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Multiple Myeloma; Oligopeptides; Proteasome Inhibitors; Pyrazines

2013
[Multiple myeloma].
    Vnitrni lekarstvi, 2013, Volume: 59, Issue:7

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Boronic Acids; Bortezomib; Humans; Lenalidomide; Maintenance Chemotherapy; Multiple Myeloma; Oligopeptides; Prognosis; Pyrazines; Thalidomide

2013
Multiple myeloma: Defining the high-risk patient and determining the optimal treatment strategy.
    Current hematologic malignancy reports, 2013, Volume: 8, Issue:4

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Humans; Induction Chemotherapy; Lenalidomide; Maintenance Chemotherapy; Multiple Myeloma; Oligopeptides; Pyrazines; Randomized Controlled Trials as Topic; Risk Factors; Thalidomide

2013
Future agents and treatment directions in multiple myeloma.
    Expert review of hematology, 2014, Volume: 7, Issue:1

    Topics: Antibodies, Monoclonal; Antineoplastic Agents, Alkylating; Boronic Acids; Bortezomib; Histone Deacetylase Inhibitors; Humans; Immunologic Factors; Multiple Myeloma; Oligopeptides; Proteasome Inhibitors; Protein Kinase Inhibitors; Pyrazines

2014
New approaches to management of multiple myeloma.
    Current treatment options in oncology, 2014, Volume: 15, Issue:2

    Topics: Adult; Age Factors; Aged; Antibodies, Monoclonal; Antineoplastic Agents; Boron Compounds; Boronic Acids; Bortezomib; Depsipeptides; Frail Elderly; Glycine; Humans; Lenalidomide; Middle Aged; Multiple Myeloma; Oligopeptides; Phosphorylcholine; Proteasome Inhibitors; Pyrazines; Quality of Life; Recurrence; Thalidomide; Treatment Outcome

2014
[Determinants of sensitivity to proteasome inhibitors and strategies to overcome acquired resistance to bortezomib in multiple myeloma].
    [Rinsho ketsueki] The Japanese journal of clinical hematology, 2014, Volume: 55, Issue:3

    Topics: Activating Transcription Factor 3; Activating Transcription Factor 4; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cyclin-Dependent Kinase 5; Cytokines; Dexamethasone; DNA-Binding Proteins; Drug Discovery; Drug Resistance, Neoplasm; Humans; Hydroxamic Acids; Indoles; Kruppel-Like Transcription Factors; Molecular Targeted Therapy; Multiple Myeloma; Nicotinamide Phosphoribosyltransferase; Oligopeptides; Panobinostat; Phosphorylcholine; Proteasome Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Regulatory Factor X Transcription Factors; Toyocamycin; Transcription Factors

2014
Peripheral neuropathy experience in patients with relapsed and/or refractory multiple myeloma treated with carfilzomib.
    Oncology (Williston Park, N.Y.), 2013, Volume: 27 Suppl 3

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Humans; Multiple Myeloma; Oligopeptides; Peripheral Nervous System Diseases; Proteasome Inhibitors; Pyrazines; Recurrence

2013
Current advances in novel proteasome inhibitor-based approaches to the treatment of relapsed/refractory multiple myeloma.
    Oncology (Williston Park, N.Y.), 2011, Nov-15, Volume: 25 Suppl 2

    Topics: Boronic Acids; Bortezomib; Humans; Multiple Myeloma; Oligopeptides; Proteasome Inhibitors; Pyrazines; Recurrence

2011
Treatment-related adverse events in patients with relapsed/refractory multiple myeloma.
    Oncology (Williston Park, N.Y.), 2011, Nov-15, Volume: 25 Suppl 2

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Humans; Kidney; Multiple Myeloma; Nervous System Diseases; Oligopeptides; Pyrazines; Recurrence; Thalidomide; Venous Thromboembolism

2011
Pomalidomide for multiple myeloma.
    Expert review of hematology, 2014, Volume: 7, Issue:6

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Immunologic Factors; Lenalidomide; Multiple Myeloma; Neoplasm Recurrence, Local; Oligopeptides; Pyrazines; Thalidomide

2014
Current treatment landscape for relapsed and/or refractory multiple myeloma.
    Nature reviews. Clinical oncology, 2015, Volume: 12, Issue:1

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Boronic Acids; Bortezomib; Hematopoietic Stem Cell Transplantation; Humans; Immunoglobulins; Lenalidomide; Multiple Myeloma; Neoplasm Recurrence, Local; Oligopeptides; Peripheral Nervous System Diseases; Pyrazines; Thalidomide; Treatment Outcome

2015
Treatment-related symptom management in patients with multiple myeloma: a review.
    Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 2015, Volume: 23, Issue:5

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Drug-Related Side Effects and Adverse Reactions; Humans; Immunologic Factors; Immunomodulation; Lenalidomide; Multiple Myeloma; Oligopeptides; Peripheral Nervous System Diseases; Proteasome Inhibitors; Pyrazines; Quality of Life; Thalidomide

2015
Role of bone-anabolic agents in the treatment of breast cancer bone metastases.
    Breast cancer research : BCR, 2014, Volume: 16, Issue:6

    Topics: Antineoplastic Agents; Bone Density Conservation Agents; Bone Neoplasms; Boronic Acids; Bortezomib; Breast Neoplasms; Everolimus; Female; Humans; Oligopeptides; Osteoblasts; Parathyroid Hormone; Proteasome Inhibitors; Pyrazines; Recombinant Fusion Proteins; Sirolimus; Thiophenes; Transforming Growth Factor beta

2014

Trials

7 trial(s) available for pyrazines and carfilzomib

ArticleYear
Alkaline phosphatase variation during carfilzomib treatment is associated with best response in multiple myeloma patients.
    European journal of haematology, 2011, Volume: 86, Issue:6

    Topics: Alkaline Phosphatase; Antineoplastic Agents; Boronic Acids; Bortezomib; Drug Resistance, Neoplasm; Female; Humans; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Osteogenesis; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Retrospective Studies; Treatment Outcome

2011
Carfilzomib: a novel second-generation proteasome inhibitor.
    Future oncology (London, England), 2011, Volume: 7, Issue:5

    Topics: Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Hematologic Neoplasms; Humans; Multiple Myeloma; Neutropenia; Oligopeptides; Proteasome Inhibitors; Protein Binding; Pyrazines; Thrombocytopenia

2011
An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma.
    Blood, 2012, Jun-14, Volume: 119, Issue:24

    Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Boronic Acids; Bortezomib; Cohort Studies; Demography; Disease-Free Survival; Female; Humans; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Pyrazines; Recurrence; Time Factors; Treatment Outcome

2012
An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib.
    British journal of haematology, 2012, Volume: 158, Issue:6

    Topics: Adult; Aged; Antineoplastic Agents; Boronic Acids; Bortezomib; Disease Progression; Drug Resistance, Neoplasm; Fatigue; Female; Gastrointestinal Neoplasms; Hematologic Diseases; Humans; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Protease Inhibitors; Pyrazines; Recurrence; Treatment Outcome

2012
An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma.
    Clinical lymphoma, myeloma & leukemia, 2012, Volume: 12, Issue:5

    Topics: Adult; Aged; Aged, 80 and over; Boronic Acids; Bortezomib; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Drug Tolerance; Female; Humans; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Pilot Projects; Proteasome Inhibitors; Pyrazines; Secondary Prevention

2012
Replacement of bortezomib with carfilzomib for multiple myeloma patients progressing from bortezomib combination therapy.
    Leukemia, 2014, Volume: 28, Issue:7

    Topics: Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Substitution; Female; Humans; Male; Middle Aged; Multiple Myeloma; Neoplasm Staging; Oligopeptides; Pyrazines; Treatment Outcome

2014
A phase 2 single-center study of carfilzomib 56 mg/m2 with or without low-dose dexamethasone in relapsed multiple myeloma.
    Blood, 2014, Aug-07, Volume: 124, Issue:6

    Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Disease Progression; Disease-Free Survival; Female; Humans; Kaplan-Meier Estimate; Lenalidomide; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Pyrazines; Risk Factors; Thalidomide; Treatment Outcome

2014

Other Studies

37 other study(ies) available for pyrazines and carfilzomib

ArticleYear
The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells.
    British journal of haematology, 2007, Volume: 136, Issue:6

    Topics: Adult; Aged; Aged, 80 and over; Apoptosis; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Female; Humans; Leukemia, Myeloid, Acute; Male; Middle Aged; Oligopeptides; Protease Inhibitors; Pyrazines

2007
Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma.
    Blood, 2007, Nov-01, Volume: 110, Issue:9

    Topics: Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Proliferation; Drug Evaluation, Preclinical; Drug Resistance, Neoplasm; Humans; Models, Biological; Multiple Myeloma; Oligopeptides; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Signal Transduction; Tumor Cells, Cultured; Ubiquitin

2007
Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome.
    Cancer research, 2007, Jul-01, Volume: 67, Issue:13

    Topics: Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Chymotrypsin; Dose-Response Relationship, Drug; Humans; Inhibitory Concentration 50; Male; Mice; Neoplasm Transplantation; Oligopeptides; Proteasome Endopeptidase Complex; Pyrazines; Rats; Rats, Sprague-Dawley

2007
Acquisition of a multidrug-resistant phenotype with a proteasome inhibitor in multiple myeloma.
    Leukemia, 2009, Volume: 23, Issue:11

    Topics: Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Multiple; Humans; Multiple Myeloma; Oligopeptides; Phenotype; Protease Inhibitors; Pyrazines

2009
The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo.
    Blood, 2010, Jun-03, Volume: 115, Issue:22

    Topics: Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Cycle; Chymotrypsin; DNA Damage; Drug Resistance, Neoplasm; Drug Synergism; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; In Vitro Techniques; JNK Mitogen-Activated Protein Kinases; Lymphoma, Large B-Cell, Diffuse; Mice; Mice, Nude; Mitochondria; NF-kappa B; Oligopeptides; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Vorinostat; Xenograft Model Antitumor Assays

2010
Recent advances in myeloma treatment.
    Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis, 2011, Volume: 44, Issue:2

    Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Humans; Lenalidomide; Medical Oncology; Melphalan; Multiple Myeloma; Oligopeptides; Prednisone; Pyrazines; Quality of Life; Salvage Therapy; Stem Cell Transplantation; Thalidomide

2011
Carfilzomib-dependent selective inhibition of the chymotrypsin-like activity of the proteasome leads to antitumor activity in Waldenstrom's Macroglobulinemia.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2011, Apr-01, Volume: 17, Issue:7

    Topics: Animals; Antineoplastic Agents; Apoptosis; Bone Marrow Cells; Boronic Acids; Bortezomib; Caspases; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Survival; Chemokine CXCL12; Chymotrypsin; Coculture Techniques; DNA Fragmentation; Drug Synergism; Enzyme Activation; Female; Humans; JNK Mitogen-Activated Protein Kinases; Lymphoma; Mice; Mice, SCID; Oligopeptides; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Proteasome Inhibitors; Pyrazines; Serine Proteinase Inhibitors; Unfolded Protein Response; Waldenstrom Macroglobulinemia

2011
Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2011, May-01, Volume: 17, Issue:9

    Topics: Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Cells, Cultured; Cysteine Endopeptidases; Drug Delivery Systems; Drug-Related Side Effects and Adverse Reactions; Hep G2 Cells; Humans; Male; Models, Biological; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Rats; Rats, Sprague-Dawley

2011
Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib.
    Chemistry & biology, 2011, May-27, Volume: 18, Issue:5

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Catalytic Domain; Cell Line, Tumor; Cell Membrane Permeability; Humans; Multiple Myeloma; Oligopeptides; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Trypsin

2011
Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells.
    Arthritis and rheumatism, 2012, Volume: 64, Issue:2

    Topics: Animals; Antibody-Producing Cells; Autoantibodies; Boronic Acids; Bortezomib; Disease Progression; Humans; Interferon Type I; Leukocytes, Mononuclear; Lupus Erythematosus, Systemic; Lupus Nephritis; Mice; Oligopeptides; Protease Inhibitors; Pyrazines

2012
Drugs: More shots on target.
    Nature, 2011, Dec-14, Volume: 480, Issue:7377

    Topics: Antineoplastic Agents; Boron Compounds; Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Resistance, Neoplasm; Glycine; Humans; Immunologic Factors; Lenalidomide; Multiple Myeloma; Oligopeptides; Protease Inhibitors; Pyrazines; Survival Rate; Thalidomide; Threonine

2011
Analysing properties of proteasome inhibitors using kinetic and X-ray crystallographic studies.
    Methods in molecular biology (Clifton, N.J.), 2012, Volume: 832

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Crystallography, X-Ray; Drug Design; Enzyme Inhibitors; Lactones; Multiple Myeloma; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Pyrroles; Saccharomyces cerevisiae; Threonine

2012
Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib.
    Molecular pharmaceutics, 2012, Aug-06, Volume: 9, Issue:8

    Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Survival; Drug Resistance, Neoplasm; Humans; Oligopeptides; Peptides; Proteasome Inhibitors; Pyrazines; Verapamil

2012
The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects.
    Leukemia, 2013, Volume: 27, Issue:2

    Topics: Administration, Oral; Animals; Antineoplastic Combined Chemotherapy Protocols; Blotting, Western; Bone Marrow; Bone Resorption; Boronic Acids; Bortezomib; Calcification, Physiologic; Cell Differentiation; Cell Proliferation; Epoxy Compounds; Humans; Mice; Mice, Inbred C57BL; Mice, Inbred NOD; Mice, SCID; Multiple Myeloma; Oligopeptides; Osteoblasts; Osteoclasts; Osteogenesis; Proteasome Inhibitors; Pyrazines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stromal Cells; Tumor Cells, Cultured; Tumor Microenvironment

2013
Role of carfilzomib in the treatment of multiple myeloma.
    Expert review of hematology, 2012, Volume: 5, Issue:4

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Evaluation, Preclinical; Drug Therapy, Combination; Histone Deacetylase Inhibitors; Humans; Immunosuppressive Agents; Multiple Myeloma; Oligopeptides; Peptide Hydrolases; Proteasome Inhibitors; Pyrazines; Thalidomide

2012
The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4.
    Autophagy, 2012, Volume: 8, Issue:12

    Topics: Activating Transcription Factor 4; Autophagy; Boronic Acids; Bortezomib; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Survival; Head and Neck Neoplasms; Humans; Models, Biological; Oligopeptides; Proteasome Inhibitors; Pyrazines; Squamous Cell Carcinoma of Head and Neck; Unfolded Protein Response

2012
Multiple myeloma, version 1.2013.
    Journal of the National Comprehensive Cancer Network : JNCCN, 2013, Jan-01, Volume: 11, Issue:1

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Dexamethasone; Disease Progression; Humans; Hydroxamic Acids; Lenalidomide; Multiple Myeloma; Nitrogen Mustard Compounds; Oligopeptides; Peripheral Nervous System Diseases; Practice Guidelines as Topic; Pyrazines; Recurrence; Salvage Therapy; Thalidomide; Vorinostat

2013
[Molecular targeting agents for multiple myeloma].
    Nihon rinsho. Japanese journal of clinical medicine, 2012, Volume: 70 Suppl 8

    Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Boron Compounds; Boronic Acids; Bortezomib; Glycine; Histone Deacetylases; Humans; Immunologic Factors; Lactones; Lenalidomide; Molecular Targeted Therapy; Multiple Myeloma; Oligopeptides; Proteasome Inhibitors; Pyrazines; Pyrroles; Thalidomide

2012
Carfilzomib for the treatment of multiple myeloma.
    Drugs of today (Barcelona, Spain : 1998), 2013, Volume: 49, Issue:3

    Topics: Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Drug Resistance, Neoplasm; Humans; Multiple Myeloma; Oligopeptides; Pyrazines

2013
Proteasome inhibition profoundly affects activated human B cells.
    Transplantation, 2013, Jun-15, Volume: 95, Issue:11

    Topics: Apoptosis; B-Lymphocytes; Boronic Acids; Bortezomib; Cell Proliferation; Cells, Cultured; Humans; Immunoglobulin G; Immunoglobulin M; In Vitro Techniques; Oligopeptides; Plasma Cells; Proteasome Endopeptidase Complex; Pyrazines

2013
The characteristics and outcomes of patients with multiple myeloma dual refractory or intolerant to bortezomib and lenalidomide in the era of carfilzomib and pomalidomide.
    Leukemia & lymphoma, 2014, Volume: 55, Issue:2

    Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Drug Resistance, Neoplasm; Drug Tolerance; Female; Humans; Lenalidomide; Logistic Models; Male; Middle Aged; Multiple Myeloma; Multivariate Analysis; Oligopeptides; Outcome Assessment, Health Care; Prognosis; Pyrazines; Retrospective Studies; Risk Factors; Survival Analysis; Thalidomide

2014
The novel proteasome inhibitor carfilzomib induces cell cycle arrest, apoptosis and potentiates the anti-tumour activity of chemotherapy in rituximab-resistant lymphoma.
    British journal of haematology, 2013, Volume: 162, Issue:5

    Topics: Antibodies, Monoclonal, Murine-Derived; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Boronic Acids; Bortezomib; Caspase Inhibitors; Caspases; Cell Cycle Checkpoints; Cytotoxicity, Immunologic; DNA Fragmentation; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Humans; Lymphoma, B-Cell; Neoplasm Proteins; Oligopeptides; Proteasome Inhibitors; Pyrazines; Rituximab; Tumor Cells, Cultured; Up-Regulation

2013
The ubiquitin-proteasome-system.
    Biochimica et biophysica acta, 2014, Volume: 1843, Issue:1

    Topics: Animals; Boronic Acids; Bortezomib; Humans; Multiple Myeloma; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Ubiquitin; Ubiquitination

2014
Parathyroid hormone receptor mediates the anti-myeloma effect of proteasome inhibitors.
    Bone, 2014, Volume: 61

    Topics: Animals; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Female; Humans; Male; Mice; Multiple Myeloma; Oligopeptides; Proteasome Inhibitors; Pyrazines; Receptor, Parathyroid Hormone, Type 1

2014
Systematic comparison of peptidic proteasome inhibitors highlights the α-ketoamide electrophile as an auspicious reversible lead motif.
    Angewandte Chemie (International ed. in English), 2014, Feb-03, Volume: 53, Issue:6

    Topics: Binding Sites; Boronic Acids; Bortezomib; Catalytic Domain; Crystallography, X-Ray; HeLa Cells; Humans; Leupeptins; Molecular Dynamics Simulation; Oligopeptides; Peptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Binding; Pyrazines

2014
Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines.
    Journal of hematology & oncology, 2014, Jan-13, Volume: 7

    Topics: Apoptosis; Blotting, Western; Boronic Acids; Bortezomib; Cell Line, Tumor; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Hematologic Neoplasms; Histocompatibility Antigens Class I; HLA Antigens; Humans; Interferon-gamma; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Subunits; Pyrazines; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Up-Regulation

2014
A case of eosinophilic dermatosis of hematologic malignancy in a patient with multiple myeloma.
    Dermatology online journal, 2014, Jan-15, Volume: 20, Issue:1

    Topics: Administration, Cutaneous; Adrenal Cortex Hormones; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Dexamethasone; Diagnosis, Differential; Eosinophilia; Herpes Simplex; Herpes Zoster; Humans; Insect Bites and Stings; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Paraneoplastic Syndromes; Pemphigoid, Bullous; Pyrazines; Skin Diseases

2014
Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors.
    Cancer biology & therapy, 2014, Volume: 15, Issue:9

    Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; Boronic Acids; Bortezomib; Carcinoma, Squamous Cell; Cell Line, Tumor; Cisplatin; Drug Resistance, Neoplasm; Drug Synergism; Head and Neck Neoplasms; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Membrane Proteins; Mitochondrial Proteins; Oligopeptides; Proteasome Inhibitors; Pyrazines; Vorinostat

2014
Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition.
    Molecular and cellular biology, 2014, Sep-15, Volume: 34, Issue:18

    Topics: Activating Transcription Factor 4; Amino Acid Transport System y+; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; Cysteine; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Glutathione; Glycine; HEK293 Cells; HeLa Cells; Humans; Leupeptins; NF-E2-Related Factor 2; Oligopeptides; Proteasome Endopeptidase Complex; Pyrazines; RNA, Small Interfering; Sulfasalazine; Urinary Bladder Neoplasms

2014
Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells.
    PloS one, 2014, Volume: 9, Issue:7

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; HEK293 Cells; Humans; Inhibitory Concentration 50; Intracellular Space; Leupeptins; Oligopeptides; Peptides; Proteasome Inhibitors; Pyrazines

2014
Renal thrombotic microangiopathy and podocytopathy associated with the use of carfilzomib in a patient with multiple myeloma.
    BMC nephrology, 2014, Sep-30, Volume: 15

    Topics: Acute Kidney Injury; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Combined Modality Therapy; Cyclophosphamide; Dexamethasone; Disease Progression; Edema; Fatal Outcome; Hematopoietic Stem Cell Transplantation; Humans; Hypertension, Renal; Lenalidomide; Male; Middle Aged; Multiple Myeloma; Oligopeptides; Podocytes; Proteasome Inhibitors; Proteinuria; Pyrazines; Recurrence; Shock, Septic; Teniposide; Thalidomide; Thrombotic Microangiopathies

2014
Bortezomib-resistant mutant proteasomes: structural and biochemical evaluation with carfilzomib and ONX 0914.
    Structure (London, England : 1993), 2015, Feb-03, Volume: 23, Issue:2

    Topics: Boronic Acids; Bortezomib; Catalytic Domain; Crystallography, X-Ray; Drug Resistance, Neoplasm; Models, Molecular; Molecular Structure; Mutagenesis; Mutation; Oligopeptides; Proteasome Endopeptidase Complex; Protein Conformation; Pyrazines; X-Ray Diffraction; Yeasts

2015
Therapeutic landscape of carfilzomib and other modulators of the ubiquitin-proteasome pathway.
    Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2015, Mar-01, Volume: 33, Issue:7

    Topics: Antineoplastic Agents; Boron Compounds; Boronic Acids; Bortezomib; Cell Line, Tumor; Clinical Trials as Topic; Glycine; Hematologic Neoplasms; Humans; Neoplasms; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Signal Transduction; Ubiquitin

2015
[Carfilzomib in multiple myeloma relapses].
    Bulletin du cancer, 2015, Volume: 102, Issue:2

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials, Phase III as Topic; Dexamethasone; Heart; Humans; Lenalidomide; Multiple Myeloma; Neoplasm Recurrence, Local; Oligopeptides; Pyrazines; Randomized Controlled Trials as Topic; Thalidomide

2015
How I treat Waldenström macroglobulinemia.
    Blood, 2015, Aug-06, Volume: 126, Issue:6

    Topics: Adenine; Adult; Aged; Antibodies, Monoclonal, Murine-Derived; Antineoplastic Combined Chemotherapy Protocols; B-Lymphocytes; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Cladribine; Cyclophosphamide; Everolimus; Gene Expression; Genetic Predisposition to Disease; Hematopoietic Stem Cell Transplantation; Humans; Immunoglobulin M; Male; Middle Aged; Molecular Targeted Therapy; Myeloid Differentiation Factor 88; Nitrogen Mustard Compounds; Oligopeptides; Piperidines; Plasmapheresis; Pyrazines; Pyrazoles; Pyrimidines; Receptors, CXCR4; Rituximab; Sirolimus; Transplantation, Autologous; Vidarabine; Waldenstrom Macroglobulinemia

2015
FDA approves new agent for multiple myeloma.
    Journal of the National Cancer Institute, 2015, Volume: 107, Issue:6

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Clinical Trials as Topic; Dexamethasone; Disease-Free Survival; Drug Administration Schedule; Drug Approval; Drug Resistance, Neoplasm; Humans; Hydroxamic Acids; Indoles; Multiple Myeloma; Oligopeptides; Panobinostat; Pyrazines; Treatment Outcome; United States; United States Food and Drug Administration

2015
The novel β2-selective proteasome inhibitor LU-102 decreases phosphorylation of I kappa B and induces highly synergistic cytotoxicity in combination with ibrutinib in multiple myeloma cells.
    Cancer chemotherapy and pharmacology, 2015, Volume: 76, Issue:2

    Topics: Adenine; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Synergism; Humans; I-kappa B Proteins; Lymphoma, Mantle-Cell; Multiple Myeloma; Oligopeptides; Phosphorylation; Piperidines; Proteasome Inhibitors; Pyrazines; Pyrazoles; Pyrimidines

2015