pyrazinamide has been researched along with valinomycin in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (25.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (50.00) | 29.6817 |
2010's | 1 (25.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Aronson, PS; Guggino, SE | 1 |
Permar, S; Sun, Z; Zhang, Y | 1 |
Hirano, T; Iseki, K; Itagaki, S; Kobayashi, M; Miyazaki, K; Shimamoto, S; Sugawara, M | 1 |
4 other study(ies) available for pyrazinamide and valinomycin
Article | Year |
---|---|
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes.
Topics: Animals; Biological Transport, Active; Dogs; Hydrogen-Ion Concentration; Kidney Cortex; Lactates; Lactic Acid; Membranes; Microvilli; Models, Biological; Niacin; Nigericin; Pyrazinamide; Sodium; Uric Acid; Valinomycin | 1985 |
Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide.
Topics: Antitubercular Agents; Cell Survival; Colony Count, Microbial; Culture Media; Drug Interactions; Drug Resistance, Bacterial; Humans; Hydrogen-Ion Concentration; Ionophores; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Pyrazinamide; Reserpine; Serum Albumin, Bovine; Time Factors; Tuberculosis; Valinomycin | 2002 |
Phenolsulfonphthalein transport by potential-sensitive urate transport system.
Topics: Animals; Biological Transport; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Membrane; Chlorides; Dose-Response Relationship, Drug; Ionophores; Kidney; Male; Mannitol; Membrane Potentials; Microvilli; Phenolsulfonphthalein; Potassium Chloride; Probenecid; Pyrazinamide; Rats; Rats, Wistar; Time Factors; Uric Acid; Valinomycin | 2005 |