pyrantel has been researched along with nitazoxanide* in 3 studies
3 other study(ies) available for pyrantel and nitazoxanide
Article | Year |
---|---|
Using a health-rating system to evaluate the usefulness of Caenorhabditis elegans as a model for anthelmintic study.
Soil-transmitted helminths (STHs) are intestinal parasitic nematodes that infect humans, and are transmitted through contaminated soil. These nematodes include the large roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworm (Ancylostoma ceylanicum, Ancylostoma duodenale, and Necator americanus). Nearly 1.5 billion people (~24% of the population) worldwide are infected with at least one species of these parasites, burdening the poor, in particular, children and pregnant women. To combat these diseases, the WHO only recognizes four anthelmintic drugs, including the preferred drug, albendazole, for mass drug administration (MDA). These four drugs have a total of two different mechanisms of action, and, as expected, resistance has been observed. This problem calls for new drugs with different mechanisms of action. Although there is precedence for the use of Caenorhabditis elegans (C. elegans), a free-living nematode, as a model for drug screening and anthelmintic testing, their usefulness for such anthelmintic study is not clear as past research has shown that C. elegans did not show a strong response to albendazole, the MDA drug of choice, in comparison with various STHs under similar treatment. To further examine if C. elegans has the potential to be a good model organism for anthelmintic drug study, we employed a health rating scale in order to tease out potential effects of albendazole, and other anthelmintics, that may have been missed using a binary, dead/alive scale. Using the health-rating scale we found that although the worms may have not been dying, they were sick, showing dose responses to anthelmintic drugs, including albendazole, reinforcing C. elegans as a useful model for anthelmintic study. Topics: Albendazole; Animals; Anthelmintics; Caenorhabditis elegans; Helminthiasis; Humans; Inhibitory Concentration 50; Ivermectin; Lethal Dose 50; Nitro Compounds; Parasitic Sensitivity Tests; Pyrantel; Thiazoles | 2017 |
Nitazoxanide: nematicidal mode of action and drug combination studies.
Intestinal nematodes or roundworms (aka soil-transmitted helminths or STHs) cause great disease. They infect upwards of two billion people, leading to high morbidity and a range of health problems, especially in infected children and pregnant women. Development of resistance to the two main classes of drugs used to treat intestinal nematode infections of humans has been reported. To fight STH infections, we need new and more effective drugs and ways to improve the efficacy of the old drugs. One promising alternative drug is nitazoxanide (NTZ). NTZ, approved for treating human protozoan infections, was serendipitously shown to have therapeutic activity against STHs. However, its mechanism of action against nematodes is not known. Using the laboratory nematode Caenorhabditis elegans, we show that NTZ acts on the nematodes through avr-14, an alpha-type subunit of a glutamate-gated chloride ion channel known for its role in ivermectin susceptibility. In addition, a forward genetic screen to select C. elegans mutants resistant to NTZ resulted in isolation of two NTZ resistant mutants that are not in avr-14, suggesting that additional mechanisms are involved in resistance to NTZ. We found that NTZ combines synergistically with other classes of anthelmintic drugs, i.e. albendazole and pyrantel, making it a good candidate for further studies on its use in drug combination therapy of STH infections. Given NTZ acts against a wide range of nematode parasites, our findings also validate avr-14 as an excellent target for pan-STH therapy. Topics: Albendazole; Animals; Anthelmintics; Caenorhabditis elegans; Chloride Channels; Drug Synergism; Nitro Compounds; Pyrantel; Thiazoles | 2014 |
An extensive comparison of the effect of anthelmintic classes on diverse nematodes.
Soil-transmitted helminths are parasitic nematodes that inhabit the human intestine. These parasites, which include two hookworm species, Ancylostomaduodenale and Necator americanus, the whipworm Trichuristrichiura, and the large roundworm Ascarislumbricoides, infect upwards of two billion people and are a major cause of disease burden in children and pregnant women. The challenge with treating these diseases is that poverty, safety, and inefficient public health policy have marginalized drug development and distribution to control infection in humans. Anthelmintics (anti-worm drugs) have historically been developed and tested for treatment of non-human parasitic nematodes that infect livestock and companion animals. Here we systematically compare the in vitro efficacy of all major anthelmintic classes currently used in human therapy (benzimidazoles, nicotinic acetylcholine receptor agonists, macrocyclic lactones, nitazoxanide) against species closely related to human parasitic nematodes-Ancylostoma ceylanicum, Trichurismuris, and Ascarissuum--- as well as a rodent parasitic nematode used in veterinary drug discovery, Heligmosomoidesbakeri, and the free-living nematode Caenorhabditis elegans. Extensive in vitro data is complemented with single-dose in vivo data in three rodent models of parasitic diseases. We find that the effects of the drugs in vitro and in vivo can vary greatly among these nematode species, e.g., the efficacy of albendazole is strong on A. ceylanicum but weak on H. bakeri. Nonetheless, certain commonalities of the in vitro effects of the drugs can be seen, e.g., nitazoxanide consistently shows an all-or-nothing response. Our in vitro data suggest that further optimization of the clinical efficacy of some of these anthelmintics could be achieved by altering the treatment routine and/or dosing. Most importantly, our in vitro and in vivo data indicate that the hookworm A. ceylanicum is a particularly sensitive and useful model for anthelmintic studies and should be incorporated early on in drug screens for broad-spectrum human soil-transmitted helminth therapies. Topics: Albendazole; Animals; Anthelmintics; Cricetinae; Drug Resistance; Female; Ivermectin; Male; Mice; Nematoda; Nematode Infections; Nitro Compounds; Parasitic Sensitivity Tests; Pyrantel; Species Specificity; Thiazoles | 2013 |