pyrachlostrobin has been researched along with trifloxystrobin* in 16 studies
1 review(s) available for pyrachlostrobin and trifloxystrobin
Article | Year |
---|---|
Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt.
The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of $0.12/kg ($2.97/bushel) and application costs of $40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high. Topics: Acetates; Carbamates; Edible Grain; Fungicides, Industrial; Imines; Methacrylates; Plant Diseases; Plant Leaves; Pyrazoles; Pyrimidines; Risk Factors; Strobilurins; Triazoles; United States; Zea mays | 2011 |
15 other study(ies) available for pyrachlostrobin and trifloxystrobin
Article | Year |
---|---|
Evidence of strobilurin fungicides and their metabolites in Dongjiang River ecosystem, southern China: Bioaccumulation and ecological risks.
Despite the widespread application of strobilurin fungicides (SFs) in agriculture, little is known about their distribution and bioaccumulation in aquatic ecosystems. In this study, the concentrations of 12 SFs and two of their metabolites were determined in abiotic (water and sediment; n = 83) and biotic (plant, algae, zooplankton, and fish; n = 123) samples collected from a subtropical freshwater ecosystem, namely, Dongjiang River wetland, in southern China. Among the 12 SFs measured, azoxystrobin (AZ) was the major fungicide found in surface water (median: 2.20 ng/L) and sediment (0.064 ng/g dry wt.). Azoxystrobin acid (AZ-acid), a metabolite of AZ, was the major analyte in the plant samples and had a median concentration at 0.36 ng/g dry wt. In algae and zooplankton, (Z)-metominostrobin was the predominant fungicide and had median concentrations of 3.52 and 5.55 ng/g dry wt., respectively. In fish muscle, dimoxystrobin (DIMO) was the major SF and had a median concentration of 0.47 ng/g dry wt. The bioconcentration factor (BCF) values of AZ-acid, trifloxystrobin (TFS), and pyraclostrobin (PYR) in algae and zooplankton and AZ-acid, PYR, TFS, TFS-acid, picoxystrobin, and DIMO in fish muscle exceeded 1000 L/kg (algae, zooplankton, and fish concentrations were expressed on a dry weight basis), suggesting that these fungicides can accumulate in biota. A positive association between log BCFs of SFs in fish and logKow of SFs and a negative correlation between log BCFs and the log solubility index were observed. Additionally, the risk quotient (RQ) was calculated to evaluate the potential ecotoxicological risk of SFs to different aquatic organisms (algae, zooplankton, and fish). The PYR and DIMO concentrations at 19 sampling sites had RQ values >0.1, indicating moderate ecotoxicological risks to aquatic organisms. This study is the first to document the widespread occurrence of SFs and their metabolites in aquatic ecosystems and to elucidate the bioaccumulation potential of SFs in aquatic organisms. Topics: Animals; Aquatic Organisms; Bioaccumulation; China; Ecosystem; Environmental Monitoring; Fishes; Fungicides, Industrial; Rivers; Strobilurins; Water; Water Pollutants, Chemical; Zooplankton | 2024 |
Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts.
While several agricultural fungicides are known to directly affect invertebrate pests, including aphids, the mechanisms involved are often unknown. One hypothesis is that fungicides with antibacterial activity suppress bacterial endosymbionts present in aphids which are important for aphid survival. Endosymbiont-related effects are expected to be transgenerational, given that these bacteria are maternally inherited. Here, we test for these associations using three fungicides (chlorothalonil, pyraclostrobin and trifloxystrobin) against the bird cherry-oat aphid, Rhopalosiphum padi, using a microinjected strain that carried both the primary endosymbiont Buchnera and the secondary endosymbiont Rickettsiella.. We show that the fungicide chlorothalonil did not cause an immediate effect on aphid survival, whereas both strobilurin fungicides (pyraclostrobin and trifloxystrobin) decreased survival after 48 h exposure. However, chlorothalonil substantially reduced the lifespan and fecundity of the F1 generation. Trifloxystrobin also reduced the lifespan and fecundity of F1 offspring, however, pyraclostrobin did not affect these traits. None of the fungicides consistently altered the density of Buchnera or Rickettsiella in whole aphids.. Our results suggest fungicides have sublethal impacts on R. padi that are not fully realized until the generation after exposure, and these sublethal impacts are not associated with the density of endosymbionts harbored by R. padi. However, we cannot rule out other effects of fungicides on endosymbionts that might influence fitness, like changes in their tissue distribution. We discuss these results within the context of fungicidal effects on aphid suppression across generations and point to potential field applications. © 2022 Society of Chemical Industry. Topics: Acetates; Animals; Anti-Bacterial Agents; Aphids; Fungicides, Industrial; Imines; Nitriles; Strobilurins | 2022 |
Strobilurin fungicides in house dust: is wallboard a source?
Strobilurin fungicides are used primarily in fruits and vegetables, but recently, a patent was issued for one strobilurin fungicide, azoxystrobin, in mold-resistant wallboard. This raises concerns about the potential presence of these chemicals in house dust and potential exposure indoors, particularly in young children. Furthermore, recent toxicological studies have suggested that strobilurins may cause neurotoxicity. Currently, it is not clear whether or not azoxystrobin applications in wallboard lead to exposures in the indoor environments. The purpose of this study was to determine if azoxystrobin, and related strobilurins, could be detected in house dust. We also sought to characterize the concentrations of azoxystrobin in new wallboard samples. To support this study, we collected and analyzed 16 new dry wall samples intentionally marketed for use in bathrooms to inhibit mold. We then analyzed 188 house dust samples collected from North Carolina homes in 2014-2016 for azoxystrobin and related strobilurins, including pyraclostrobin, trifloxystrobin, and fluoxastrobin using liquid chromatography tandem mass spectrometry. Detection frequencies for azoxystrobin, pyraclostrobin, trifloxystrobin, and fluoxastrobin ranged from 34-87%, with azoxystrobin being detected most frequently and at the highest concentrations (geometric mean = 3.5 ng/g; maximum = 10,590 ng/g). Azoxystrobin was also detected in mold-resistant wallboard samples, primarily in the paper covering where it was found at concentrations up to 88.5 µg/g. Cumulatively, these results suggest that fungicides present in wallboard may be migrating to the indoor environment, leading to exposure in the residences that would constitute a separate exposure pathway independent of dietary exposures. Topics: Acetates; Air Pollution, Indoor; Chromatography, Liquid; Construction Industry; Dust; Fungicides, Industrial; Imines; North Carolina; Pyrimidines; Strobilurins | 2020 |
An effervescence tablet-assisted microextraction based on the solidification of deep eutectic solvents for the determination of strobilurin fungicides in water, juice, wine, and vinegar samples by HPLC.
In this study, a simple, efficient, and green effervescence tablet-assisted microextraction method based on the solidification of deep eutectic solvent (ETA-ME-SDES) was developed to determine picoxystrobin, pyraclostrobin, and trifloxystrobin in water, juice, wine, and vinegar samples by HPLC. An eco-friendly, hydrophobic, deep eutectic solvent (DES, acting as the extraction solvent) was synthesized by thymol and octanoic acid in the molar ratio of 1:5. The extraction solvent dispersed in sample solutions with the assistance of pH adjustment and effervescence reaction, and was collected after solidification in an ice bath. Several essential conditions, including the type and the volume of DESs, the amount of ammonia hydroxide, and the components of effervescence tablets were optimized. The limits of detection ranged from 0.15 to 0.38 μg L Topics: Acetates; Acetic Acid; Chromatography, High Pressure Liquid; Fruit and Vegetable Juices; Fungicides, Industrial; Hydrogen-Ion Concentration; Imines; Limit of Detection; Liquid Phase Microextraction; Salts; Strobilurins; Water Pollutants, Chemical; Wine | 2020 |
Larval pesticide exposure impacts monarch butterfly performance.
The long-term decline of monarch butterflies has been attributed to loss of their milkweed (Asclepias sp.) host-plants after the introduction of herbicide-tolerant crops. However, recent studies report pesticide residues on milkweed leaves that could act as a contributing factor when ingested as part of their larval diet. In this study, we exposed monarch larvae to six pesticides (insecticide: clothianidin; herbicides: atrazine, S-metolachlor; fungicides: azoxystrobin, pyraclostrobin, trifloxystrobin) on their primary host-plant, A. syriaca. Each was tested at mean and maximum levels reported from published analyses of milkweeds bordering cropland and thus represent field-relevant concentrations. Monarch lethal and sub-lethal responses were tracked over their complete development, from early instar larvae to adult death. Overall, we found no impact of any pesticide on immature development time and relatively weak effects on larval herbivory or survival to adulthood. Comparatively stronger effects were detected for adult performance; namely, a 12.5% reduction in wing length in response to the fungicides azoxystrobin and trifloxystrobin. These data collectively suggest that monarch responses to host-plant pesticides are largely sublethal and more pronounced in the adult stage, despite exposure only as larvae. This outcome has important implications for risk assessment and the migratory success of monarchs in North America. Topics: Acetamides; Acetates; Animal Migration; Animals; Asclepias; Atrazine; Butterflies; Ecosystem; Fungicides, Industrial; Herbicides; Herbivory; Imines; Larva; Pesticides; Population Dynamics; Pyrimidines; Risk Assessment; Strobilurins | 2020 |
Acute toxicity and associated mechanisms of four strobilurins in algae.
Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Topics: Acetates; Algal Proteins; Catalase; Chlorella; Chlorella vulgaris; Gene Expression Regulation; Gene Expression Regulation, Enzymologic; Imines; Peroxidase; Strobilurins; Superoxide Dismutase; Water Pollutants, Chemical | 2018 |
Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos.
Topics: Acetates; Animals; Antioxidants; Fungicides, Industrial; Imines; Oxidative Stress; Reactive Oxygen Species; Strobilurins; Zebrafish | 2018 |
Differences in Small Plot and On-Farm Trials for Yield Response to Foliar Fungicide in Soybean.
Soybean yield response variability to foliar fungicide applications was evaluated in on-farm replicated strip trials (OFTs) and small-plot trials (SPTs) from 2008 through 2015 in Iowa. A total of 230 OFTs and 49 SPTs were compared for yield response to pyraclostrobin, pyraclostrobin + fluxapyroxad, or trifloxystrobin + prothioconazole fungicides. OFTs (18 to 55 m wide and 200 to 800 m long strips) were harvested with farmers' combines equipped with yield monitors and GPS, while SPTs (3.0 to 4.6 m wide and 10.7 to 15.3 m long plots) were harvested by small research plot combines. Variance component and power analyses were conducted with a subset of data consisting of 12 OFTs and SPTs, each with pyraclostrobin and evaluated in 2008 and 2009. While average yield responses were similar, the residual random yield variation was smaller in OFTs than SPTs. Power analysis showed that SPTs need more replications than OFTs to detect the same overall treatment differences. To detect a yield response of 134 kg/ha, it would require at least three treatment replications with 12 locations in OFTs and seven replications with 12 locations in SPTs. Researchers need to acknowledge the differences in statistical power of detecting yield responses to foliar fungicide on soybean in different types of field experiments, especially with smaller plot sizes in situations with less foliar disease. Topics: Acetates; Amides; Fungicides, Industrial; Glycine max; Imines; Iowa; Plant Diseases; Plant Leaves; Strobilurins; Triazoles | 2018 |
Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna.
Strobilurins constitute a new class of fungicides that is the most widely used in the world. The present study was conducted to investigate the aquatic toxicity of 3 common strobilurin fungicides (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) to Daphnia magna. The neonate acute immobilization test showed that the 48-h 50% effective concentration (EC50) values of kresoxim-methyl, pyraclostrobin, and trifloxystrobin were 443.3 µg/L, 20.9 µg/L, and 23.0 µg/L, respectively. In addition, the 3 strobilurins significantly induced activity of the important detoxification enzyme glutathione S-transferase (GST) in D. magna, and there was a significant positive relationship between GST activity and immobility of D. magna after acute exposure. The 3 strobilurins showed higher toxicity to D. magna embryos, and the 48-h EC50 were 157.3 µg/L, 3.9 µg/L, and 1.7 µg/L for kresoxim-methyl, pyraclostrobin, and trifloxystrobin, respectively. The 21-d chronic test revealed that the strobilurins could also significantly affect the reproduction, development, and growth of D. magna at sublethal concentrations. The lowest-observed-effect concentrations of kresoxim-methyl, pyraclostrobin, and trifloxystrobin for reproduction were 20 µg/L, 0.15 µg/L, and 0.2 µg/L, respectively, which were close to environmental concentrations. The findings indicate that strobilurin fungicides are very toxic to D. magna and they are sufficient to cause harm to D. magna at environmentally relevant concentrations. Environ Toxicol Chem 2017;36:182-189. © 2016 SETAC. Topics: Acetates; Animals; Carbamates; Daphnia; Fungicides, Industrial; Glutathione Transferase; Imines; Methacrylates; Phenylacetates; Pyrazoles; Reproduction; Strobilurins; Toxicity Tests; Water Pollutants, Chemical | 2017 |
EFFICACY OF FUNGICIDES AGAINST CALONECTRIA PAUCIRAMOSA IN POT AZALEA.
Calonectria (formerly Cylindrocladium) infection of pot azalea (Rhododendron simsii Planch) is an important disease problem in which usually one or two of the four plants per pot show progressing leaf and especially stem lesions, leading to mortality of the respective plant and rendering the pot unmarketable. This may occur in a later stage of the growing season, leading to significant commercial losses. The main objective of this study was to test a range of fungicides for their efficacy against this pathogen. To test the fungicides, a bioassay was first developed in which mycelium and conidiospores of the pathogen were produced on Potato Dextrose Agar, blended in water, and dilutions of the resulting suspension inoculated at the base of 11-week-old cuttings three weeks after they had been trimmed. Disease progression was monitored up to 7 weeks post inoculation and a disease index on a scale of 0 to 3 was established. In the actual efficacy trial, the following fungicides (with corresponding active ingredient(s)) were tested as preventive treatments: Topsin M 70 WG (thiophanate-methyl), Sporgon (prochloraz), Signum (boscalid+pyraclostrobin), Switch (cyprodinyl+fludioxonil), Flint 50WG (trifloxystrobin), Ortiva Top (azoxystrobin+difenoconazole) and Fungaflor (imazalil). Disease expression started after about 2 weeks, increased approximately 1 index level, and leveled off 5 weeks after inoculation. The best control was observed with Sporgon, Ortiva Top and Signum. Switch produced intermediate effects and insufficient control was observed with Topsin, Flint and Fungaflor. These results explain why specific standard fungicide treatments, such as those with Topsin, fail to control the disease, while they can be effective against a different Calonectria species such as C. pseudonaviculata, the cause of boxwood blight. Topics: Acetates; Carbamates; Dioxolanes; Fungicides, Industrial; Hypocreales; Imidazoles; Imines; Methacrylates; Plant Diseases; Pyrazoles; Pyrimidines; Rhododendron; Strobilurins; Triazoles | 2015 |
Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan, United States.
Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most serious foliar disease of sugar beet (Beta vulgaris L.) worldwide. Disease control is mainly achieved by timely fungicide applications. In 2011, CLS control failures were reported in spite of application of quinone outside inhibitor (QoI) fungicide in several counties in Michigan, United States. The purpose of this study was to confirm the resistant phenotype and identify the molecular basis for QoI resistance of Michigan C. beticola isolates.. Isolates collected in Michigan in 1998 and 1999 that had no previous exposure to the QoI fungicides trifloxystrobin or pyraclostrobin exhibited QoI EC(50) values of ≤ 0.006 µg mL(-1) . In contrast, all isolates obtained in 2011 exhibited EC(50) values of > 0.92 µg mL(-1) to both fungicides and harbored a mutation in cytochrome b (cytb) that led to an amino acid exchange from glycine to alanine at position 143 (G143A) compared with baseline QoI-sensitive isolates. Microsatellite analysis of the isolates suggested that QoI resistance emerged independently in multiple genotypic backgrounds at multiple locations. A real-time PCR assay utilizing dual-labeled fluorogenic probes was developed to detect and differentiate QoI-resistant isolates harboring the G143A mutation from sensitive isolates.. The G143A mutation in cytb is associated with QoI resistance in C. beticola. Accurate monitoring of this mutation will be essential for fungicide resistance management in this pathosystem. Topics: Acetates; Ascomycota; Beta vulgaris; Carbamates; Cytochromes b; Drug Resistance, Fungal; Fungal Proteins; Fungicides, Industrial; Imines; Methacrylates; Michigan; Microsatellite Repeats; Plant Diseases; Point Mutation; Pyrazoles; Real-Time Polymerase Chain Reaction; Sequence Analysis, DNA; Strobilurins | 2013 |
Ultrasound-assisted surfactant-enhanced emulsification microextraction with solidification of floating organic droplet followed by high performance liquid chromatography for the determination of strobilurin fungicides in fruit juice samples.
A novel method, ultrasound-assisted surfactant-enhanced emulsification microextraction with solidification of floating organic droplet (UASEME-SFOD), has been developed for the extraction of four strobilurin fungicides (kresoxim-methyl, picoxystrobin, pyraclostrobin and trifloxystrobin) in fruit juices. In the UASEME-SFOD technique, Tween 80 was used as emulsifier, and 1-undecanol was used as extraction solvent without using any organic dispersive solvent. Several parameters that affect the extraction efficiency, such as the kind and volume of extraction solvent, the type and concentration of the surfactant, extraction time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 10,000 ng mL(-1) for the targeted analytes with the correlation coefficient ranging from 0.9991 to 0.9998. The enrichment factors were in the range between 95 and 135, and the limits of detection of the method were 2-4 ng mL(-1). The fruit juice samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 82.6-97.5%. Topics: Acetates; Acrylates; Beverages; Carbamates; Chromatography, High Pressure Liquid; Emulsions; Fruit; Fungicides, Industrial; Imines; Limit of Detection; Methacrylates; Phenylacetates; Pyrazoles; Pyridines; Strobilurins; Surface-Active Agents; Temperature; Ultrasonics | 2013 |
Acute toxicity of pyraclostrobin and trifloxystrobin to Hyalella azteca.
Fungicide application rates on row crop agriculture have increased across the United States, and subsequently, contamination of adjacent wetlands can occur through spray drift or field runoff. To investigate fungicide toxicity, Hyalella azteca amphipods were exposed to 2 fungicide formulations, Headline and Stratego, and their active strobilurin ingredients, pyraclostrobin and trifloxystrobin. Water-only exposures resulted in similar median lethal concentration (LC50; 20-25 µg/L) values for formulations and strobilurin ingredients, suggesting that toxicity is due to strobilurin ingredients. These values were below concentrations that could occur following spray drift over embedded cropland wetlands. When fungicides were added to overlying water of sediment-water microcosms, toxicity was reduced by 500% for Headline and 160% for Stratego, compared with water-only exposures, based on the total amount of fungicide added to the systems. In addition, when fungicides were added to sediment prior to the addition of water, the reduction in toxicity was even greater, with no toxicity occurring at environmentally relevant levels. Differences in toxicity among exposure groups were explained by dissipation from water as toxicity values based on measured water concentrations were within 20% between all systems. The present study reinforces previous studies that Headline and Stratego are toxic to nontarget aquatic organisms. However, the presence of sediment is likely to ameliorate some toxicity of fungicide formulations, especially if spraying occurs prior to wetland inundation. Topics: Acetates; Amphipoda; Animals; Carbamates; Fungicides, Industrial; Imines; Lethal Dose 50; Methacrylates; Pyrazoles; Risk Assessment; Strobilurins; Toxicity Tests, Acute; United States; Water Pollutants, Chemical | 2013 |
[Determination of seven strobilurin fungicide residues in Chinese herbs by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction].
An LC-MS/MS method was developed for the simultaneously determination of seven strobilurin fungicide residues in Chinese herbs. The strobilurin fungicides include Z-metominostrobin, kresoxim-methyl, dimoxystrobin, picoxystrobin, pyraclostrobin, azoxystrobin and trifloxystrobin. The sample was extracted with ethyl acetate and cleaned-up by an amino SPE column. The seven strobilurin fungicide residues were separated on a C18 column with gradient elution of 1.0 per thousand formic acid and methanol as mobile phases, and detected by ESI-MS in positive ion and selective reaction monitoring (SRM) mode. External standard method was used to the quantification with good linear relationships (r > or = 0. 996). The LOQs were 2 micro g/kg for dimoxystrobin, picoxystrobin and trifloxystrobin, 4 mciro g/kg for pyraclostrobin and azoxystrobin, 10 micro g/kg for Z-metominostrobin and kresoxim-methyl. The recoveries were from 60.4% to 110% with the RSDs between 1.2% and 17%. The developed method is suitable for the determination and confirmation of the seven strobilurin fungicide residues in the three of Eight Zhes ( Ophiopogon japonicus (Thunb.), Scrophularia ningpoensis Hemsl. and Corydalis yanhusuo W T Wang). Topics: Acetates; Acrylates; Carbamates; Chromatography, Liquid; Drug Contamination; Drug Residues; Drugs, Chinese Herbal; Fungicides, Industrial; Imines; Methacrylates; Phenylacetates; Pyrazoles; Pyridines; Pyrimidines; Strobilurins; Tandem Mass Spectrometry | 2013 |
Residue-free wines: fate of some quinone outside inhibitor (QoI) fungicides in the winemaking process.
The fate of three fungicide residues (fenamidone, pyraclostrobin, and trifloxystrobin) from vine to wine was studied to evaluate the decay ratio and the influence of the technological process. The aim of this work was to identify pesticides that can degrade rapidly or be eliminated together with byproduct (lees and cake) of the winemaking process to obtain wine free of residues. The disappearance rate on grapes was calculated as pseudo-first-order kinetics, and the half-life (t(1/2)) was in the range from 5.4 +/- 1.9 to 12.2 +/- 1.2 days. The mechanism of dissipation of the three quinone outside inhibitor (QoI) fungicides was studied using different model systems. It was observed that the main mechanism responsible for disappearance was photodegradation. For active ingredients (ai) the half-lives of fenamidone, pyraclostrobin, and trifloxystrobin were 10.2 +/- 0.8, 20.1 +/- 0.1, and 8.6 +/- 1.0 h, respectively, whereas for formulation higher half-lives were observed when epicuticular waxes were present (from 13.8 +/- 0.2 to 26.6 +/- 0.1 h). After winemaking, fenamidone, pyraclostrobin, and trifloxystrobin residues were not detected in the wine, but they were present in the cake and lees. This was due to the adsorption of pesticide residues to the solid parts, which are always eliminated at the end of the alcoholic fermentation. The data obtained in these experiments suggest that these three active ingredients could be used in a planning process to obtain residue-free wines. Topics: Acetates; Carbamates; Fruit; Fungicides, Industrial; Half-Life; Hot Temperature; Imidazolines; Imines; Methacrylates; Photochemistry; Pyrazoles; Strobilurins; Vitis; Wine | 2009 |