pyrachlostrobin has been researched along with propiconazole* in 4 studies
1 review(s) available for pyrachlostrobin and propiconazole
Article | Year |
---|---|
Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt.
The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of $0.12/kg ($2.97/bushel) and application costs of $40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high. Topics: Acetates; Carbamates; Edible Grain; Fungicides, Industrial; Imines; Methacrylates; Plant Diseases; Plant Leaves; Pyrazoles; Pyrimidines; Risk Factors; Strobilurins; Triazoles; United States; Zea mays | 2011 |
3 other study(ies) available for pyrachlostrobin and propiconazole
Article | Year |
---|---|
Simultaneous determination and method validation of difenoconazole, propiconazole and pyraclostrobin in pepper and soil by LC-MS/MS in field trial samples from three provinces, China.
A liquid chromatography-electrospray ionization tandem mass spectrometry method was developed for simple and accurate detection of the fungicides difenoconazole, propiconazole and pyraclostrobin in peppers and soil. Three fungicides residues were extracted from samples by acetonitrile and cleaned up by dispersive solid-phase extraction before instrumental analysis. The accuracy and precision of the method were evaluated by conducting an intra- and inter-day recovery experiment. The limits of quantification and detection of difenoconazole, propiconazole and pyraclostrobin in pepper and soil were 0.005 and 0.0015 mg/kg, respectively. The recoveries were investigated by spiking pepper and soil at three levels, and were found to be in the ranges 79.62-103.15% for difenoconazole, 85.94-103.35% for propiconazole and 80.14-97.69% for pyraclostrobin, with relative standard deviations <6.5%. Field experiments were conducted in three locations in China. The half-lives of difenoconazole, propiconazole and pyraclostrobin were 5.3-11.5 days in peppers and 6.1-32.5 days in soil. At harvest, pepper samples were found to contain difenoconazole, propiconazole and pyraclostrobin well below the maximum residue limits of European Union at the interval of 21 days after last application following the recommended dosage. Topics: Capsicum; China; Chromatography, Liquid; Dioxolanes; Fungicides, Industrial; Limit of Detection; Linear Models; Pesticide Residues; Reproducibility of Results; Soil; Strobilurins; Tandem Mass Spectrometry; Triazoles | 2018 |
Agrochemicals: Effect on genetic resistance in yeasts colonizing winter wheat kernels.
Crop protection agents are widely used in modern agriculture and exert direct effects on non-target microorganisms such as yeasts. Yeasts abundantly colonize wheat grain and affect its chemical composition. They can also limit pathogen growth. This study evaluated the sensitivity of yeast communities colonizing winter wheat kernels to benzimidazole, strobilurin, triazole and morpholine fungicides, trinexapac-ethyl, a commercial mixture of o-nitrophenol+p-nitrophenol+5-nitroguaiacol, and chitosan applied during the growing season of winter wheat and in vitro in a diffusion test. A molecular identification analysis of yeasts isolated from winter wheat kernels was performed, and nucleotide polymorphisms in the CYTb gene (G143A) conferring resistance to strobilurin fungicides in yeast cells were identified. The size of yeast communities increased during grain storage, and the total counts of endophytic yeasts were significantly (85%) reduced following intensive fungicide treatment (fenpropimorph, a commercial mixture of pyraclostrobin, epoxiconazole and thiophanate-methyl). This study demonstrated that agrochemical residues in wheat grain can drive selection of yeast communities for reduced sensitivity to xenobiotics. A mutation in the CYTb gene (G143A) was observed in all analyzed isolates of the following azoxystrobin-resistant species: Aureobasidium pullulans, Debaryomyces hansenii, Candida albicans and C. sake. Agrochemicals tested in vitro were divided into four classes of toxicity to yeasts: (1) tebuconazole and a commercial mixture of flusilazole and carbendazim - most toxic to yeasts; (2) fenpropimorph and a commercial mixture of pyraclostrobin and epoxyconazole; (3) propiconazole, chitosan, thiophanate-methyl and a commercial mixture of o-nitrophenol, p-nitrophenol and 5-nitroguaiacol; (4) trinexapac-ethyl and azoxystrobin - least toxic to yeasts. It was found that agrochemicals can have an adverse effect on yeast abundance and the composition of yeast communities, mostly due to differences in fungicide resistance between yeast species, including the clinically significant C. albicans. Topics: Agaricales; Agrochemicals; Ascomycota; Benzimidazoles; Candida albicans; Carbamates; Drug Resistance, Fungal; Epoxy Compounds; Fungicides, Industrial; Microbial Sensitivity Tests; Pesticide Residues; Plant Diseases; Pyrimidines; Seasons; Silanes; Strobilurins; Triazoles; Triticum; Xenobiotics; Yeasts | 2018 |
Trace analysis of three fungicides in animal origin foods with a modified QuEChERS method and liquid chromatography-tandem mass spectrometry.
A multi-residue method based on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS), was developed and validated for the determination of three selected fungicides (propiconazole, pyraclostrobin, and isopyrazam) in seven animal origin foods. The overall recoveries at the three spiking levels of 0.005, 0.05, and 0.5 mg kg(-1) spanned between 72.3 and 101.4% with relative standard deviation (RSD) values between 0.7 and 14.9%. The method shows good linearity in the concentrations between 0.001 and 1 mg L(-1) with the coefficient of determination (R (2)) value >0.99 for each target analyte. The limit of detections (LODs) for target analytes were between 0.04 and 1.26 μg kg(-1), and the limit of quantifications (LOQs) were between 0.13 and 4.20 μg kg(-1). The matrix effect for each individual compound was evaluated through the study of ratios of the areas obtained in solvent and matrix standards. The optimized method provided a negligible matrix effect for propiconazole within 20%, whereas for pyraclostrobin and isopyrazam, the matrix effect was relatively significant with a maximum value of 49.8%. The developed method has been successfully applied to the analysis of 210 animal origin samples obtained from 16 provinces of China. The results suggested that the developed method was satisfactory for trace analysis of three fungicides in animal origin foods. Topics: Animals; Carbamates; Chromatography, Liquid; Food Contamination; Fungicides, Industrial; Norbornanes; Pyrazoles; Strobilurins; Tandem Mass Spectrometry; Triazoles | 2016 |