pyrachlostrobin has been researched along with indoxacarb* in 1 studies
1 other study(ies) available for pyrachlostrobin and indoxacarb
Article | Year |
---|---|
Influence of fenamidone, indoxacarb, pyraclostrobin, and deltamethrin on the population of natural yeast microflora during winemaking of two sardinian grape cultivars.
The influence of fenamidone ((S)-1-anilino-4-methyl-2-methylthio-4-phenylimidazolin-5-one), pyraclostrobin (methyl 2-[1-(4-chlorophenyl)pyrazol-3-yloxymethyl]-N-methoxycarbanilate), indoxacarb (methyl 7-Chloro-2,5-dihydro-2-[[(methoxycarbonyl) [4- (trifluoromethoxy) phenyl] amino] carbonyl] indeno[1,2-e][1,3,4] oxadiazine-4a(3H)-carboxylate), and deltamethrin ([cyano-[3-(phenoxy)phenyl]methyl] 3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate) on spontaneous fermentation carried out by natural yeast grapes microflora, was studied during the wine-making process. Aliquots of pesticide standard solutions were added to the grapes before crushing, to reach a concentration equal or half the maximum residue limit (MRL). Vinifications were performed, with maceration (R), or without maceration (W). During the wine-making process, samples were taken at the beginning (one hour after grapes crushing), at the middle and at the end of the spontaneous fermentation process. At half the MRL concentration, deltamethrin affected Pichia sp. population with a decrease of almost 50 %, while fenamidone decreased Candida sp., Candida stellata at 83, and 36%, respectively. Metschnikowia pulcherrima population decreased in all samples when compared to the control. Experiments at MRL levels showed a strong reduction for all non-Saccharomyces yeast species, when grapes had been treated with pyraclostrobin, fenamidone, and deltamethrine, except for Candida sp. which was found to have been affected only by fenamidone residues. Growth zone inhibition test showed only an in vitro activity of pyraclostrobin over Kloeckera spp., C. stellata, and M. pulcherrima. Microvinification experiments produced wines with no differences concerning S. cerevisiae population as well as production of ethanol and residual sugars. Experiments showed that at the end of the fermentation process pesticides were adsorbed by the lees and grape skins, and no pesticides residue was detectable in wine. Topics: Candida; Carbamates; Fermentation; Food Contamination; Food Handling; Food Microbiology; Imidazolines; Italy; Nitriles; Oxazines; Pesticide Residues; Pyrazoles; Pyrethrins; Strobilurins; Vitis; Wine; Yeasts | 2011 |