pyrachlostrobin and cyprodinil

pyrachlostrobin has been researched along with cyprodinil* in 5 studies

Other Studies

5 other study(ies) available for pyrachlostrobin and cyprodinil

ArticleYear
Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields.
    Plant disease, 2018, Volume: 102, Issue:11

    Incidence of blossom blight and Botrytis fruit rot (BFR), caused by Botrytis cinerea, on two southern highbush blueberry cultivars was evaluated in several blueberry fields grown in the vicinity (BB-Str

    Topics: Amides; Biphenyl Compounds; Blueberry Plants; Botrytis; Captan; Drug Resistance, Fungal; Fragaria; Fungicides, Industrial; Niacinamide; Phenotype; Plant Diseases; Pyrazoles; Pyrimidines; Strobilurins; Thiophanate; Thiophenes

2018
Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk.
    Environmental science and pollution research international, 2016, Volume: 23, Issue:12

    Greenhouse studies were conducted to evaluate the dissipation rate kinetics and estimate the behavior of selected pesticides after washing, peeling, simmering, and canning of tomato expressed as processing factor (PF). Two varieties (Marissa and Harzfeuer) were treated by six fungicides: azoxystrobin, boscalid, chlorothalonil, cyprodinil, fludioxonil, and pyraclostrobin at single and double dose and risk assessment defined as hazard quotient was performed. The QuEChERS method was used for sample preparation followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The dissipation of fungicides approximately fitted to a first-order kinetic model, with half-life values ranging from 2.49 and 2.67 days (cyprodinil) to 5.00 and 5.32 days (chlorothalonil) for Marissa and Harzfeuer variety, respectively. Results from processing studies showed that treatments have significant effects on the removal of the studied fungicides for both varieties. The PFs were generally less than 1 (between 0.01 and 0.90) and did not depend on variety. The dietary exposure assessed based on initial deposits of application at single and double dose on tomatoes and concentration after each process with PF correction showed no concern to consumer health. Our results would be a useful tool for monitoring of fungicides in tomatoes and provide more understanding of residue behavior and risk posed by these fungicides.

    Topics: Carbamates; Chromatography, Liquid; Dioxoles; Food Contamination; Food Handling; Fungicides, Industrial; Half-Life; Humans; Methacrylates; Nitriles; Pesticide Residues; Pyrazoles; Pyrimidines; Pyrroles; Risk; Risk Assessment; Solanum lycopersicum; Strobilurins; Tandem Mass Spectrometry

2016
Resistance to Increasing Chemical Classes of Fungicides by Virtue of "Selection by Association" in Botrytis cinerea.
    Phytopathology, 2016, Volume: 106, Issue:12

    Previous research has shown that Botrytis cinerea isolates with resistance to multiple chemical classes of fungicides exist in eastern strawberry fields. In this study, the fungicide resistance profiles of 2,130 isolates from flowers of commercial strawberry fields located in multiple states was determined over four consecutive strawberry production seasons. Producers were asked to alternate single-site fungicides that were considered low risk in their specific location based on resistance monitoring results in their fields. This recommendation led to an increase of chemical class diversity used in the spray programs. Results indicated that simultaneous resistance in individual isolates to two, three, four, five, six, and seven classes of fungicides increased over time. The increase in chemical class resistances within isolates was likely due to a process we termed "selection by association", where fungicide resistance traits were often linked to the trait being selected rather than the selectable trait itself. Data analysis also indicated that the odds were highest for isolates resistant to one chemical class (1CCR) to be resistant to thiophanate-methyl; for 2CCR isolates to be resistant to thiophanate-methyl and pyraclostrobin; and for 3CCR isolates to be resistant to thiophanate-methyl, pyraclostrobin, and either cyprodinil or fenhexamid. We hypothesize that the more chemical classes are used in a spray program, the faster isolates will be selected with increasing numbers of chemical class resistances by virtue of selection by association if such isolates preexist in the population.

    Topics: Botrytis; Carbamates; Drug Resistance, Fungal; Fragaria; Fungicides, Industrial; Phenotype; Plant Diseases; Pyrazoles; Pyrimidines; Strobilurins; Thiophanate

2016
Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: A promising partnership.
    Journal of chromatography. A, 2015, Dec-24, Volume: 1426

    The extreme specificity of immunoaffinity chromatography (IAC) columns coupled to the high sensitivity of ion mobility spectrometry (IMS) measurements makes this combination really useful for rapid, selective, and sensitive determination of a high variety of analytes in different samples. The capabilities of the IAC-IMS coupling have been highlighted under three different scenarios: (i) multiclass residue analysis using a single IAC column, (ii) multiclass residue analysis using stacked IAC columns, and (iii) isomer analysis. In the first case, the determination of three strobilurin fungicides - azoxystrobin, picoxystrobin, and pyraclostrobin - in water and strawberry juice was considered, obtaining limits of quantification (LOQs) from 11 to 63μgL(-1). Recoveries from 96 to 106% for water, and from 67 to 104% for strawberry juice were obtained. In the second case, anilinopyrimidine compounds, including two analytes with similar drift time, were selectively retained in different IAC columns and analyzed after independent elution in commercial wine samples by IMS. LOQ values of 16, 14 and 12μgL(-1) were obtained for pyrimethanil, mepanipyrim, and cyprodinil, respectively. The obtained recoveries for wine samples spiked with 25 and 100μgL(-1) were from 82 to 123%. Additionally, the stacked IAC columns concept was applied to the separation of Z and E isomers of azoxystrobin that were selectively retained in specific IAC columns and quantified by IMS. Recoveries between 91 and 94% were obtained for both isomers in water samples.

    Topics: Acrylates; Carbamates; Chromatography, Affinity; Fragaria; Fruit and Vegetable Juices; Fungicides, Industrial; Methacrylates; Pyrazoles; Pyridines; Pyrimidines; Sensitivity and Specificity; Stereoisomerism; Strobilurins; Water; Wine

2015
Molecular characterization, fitness and mycotoxin production of benzimidazole-resistant isolates of Penicillium expansum.
    International journal of food microbiology, 2013, Apr-01, Volume: 162, Issue:3

    Penicillium expansum field-strains resistant to benzimidazole fungicides were isolated in high frequency from decayed apple fruit collected from packinghouses and processing industries located in the region of Imathia, N. Greece. In vitro fungitoxicity tests resulted in the identification of two different resistant phenotypes: highly (BEN-HR) and moderately (BEN-MR) carbendazim-resistant. Thirty seven percent of the isolated P. expansum strains belonged to the BEN-HR phenotype, carried no apparent fitness penalties and exhibited resistance levels higher than 60 based on EC50 values. Cross resistance studies with other benzimidazole fungicides showed that all BEN-HR and BEN-MR isolates were also less sensitive to benomyl and thiabendazole. Fungitoxicity tests on the response of BEN-HR isolates to fungicides belonging to other chemical classes revealed no cross-resistance relationships between benzimidazoles and the phenylpyrrole fludioxonil, the dicarboximide iprodione, the anilinopyrimidine cyprodinil, the QoI pyraclostrobin, the imidazole imazalil and the triazole tebuconazole, indicating that a target-site modification is probably responsible for the BEN-HR phenotype observed. Contrary to the above, some BEN-MR isolates exhibited an increased sensitivity to cyprodinil compared to benzimidazole-sensitive ones. BEN-MR isolates had fitness parameters similar to the benzimidazole-sensitive isolates except for conidia production which appeared significantly decreased. Analysis of mycotoxin production (patulin and citrinin) showed that all benzimidazole-resistant isolates produced mycotoxins at concentrations significantly higher than sensitive isolates both on culture medium and on artificially inoculated apple fruit. Comparison of the β-tubulin gene DNA sequence between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in most but not all HR isolates tested. Molecular analysis of the β-tubulin gene in moderately resistant isolates did not reveal any amino acid substitution. This is the first report on the existence and distribution of highly mycotoxigenic field isolates of P. expansum resistant to the benzimidazoles indicating a high potential risk of increased mycotoxin contamination of pome fruit and by-products.

    Topics: Aminoimidazole Carboxamide; Benzimidazoles; Carbamates; Dioxoles; Drug Resistance, Multiple, Fungal; Fruit; Fungicides, Industrial; Hydantoins; Malus; Mycotoxins; Patulin; Penicillium; Pyrazoles; Pyrimidines; Pyrroles; Strobilurins; Thiabendazole; Triazoles; Tubulin

2013