putrebactin has been researched along with bisucaberin* in 4 studies
4 other study(ies) available for putrebactin and bisucaberin
Article | Year |
---|---|
Engineering siderophores.
Siderophores have important functions for bacteria in iron acquisition and as virulence factors. In this chapter we will discuss the engineering of cyclic hydroxamate siderophores by various biochemical approaches based on the example of Shewanella algae. The marine gamma-proteobacterium S. algae produces three different cyclic hydroxamate siderophores as metabolites via a single biosynthetic gene cluster and one of them is an important key player in interspecies competition blocking swarming of Vibrio alginolyticus. AvbD is the key metabolic enzyme assembling the precursors into three different core structures and hence an interesting target for metabolic and biochemical engineering. Synthetic natural and unnatural precursors can be converted in vitro with purified AvbD to generate siderophores with various ring sizes ranging from analytical to milligram scale. These engineered siderophores can be applied, for example, as swarming inhibitors against V. alginolyticus. Here, we describe the synthesis of the natural and unnatural siderophore precursors HS[X]A and provide our detailed protocols for protein expression of AvbD, conversion of HS[X]A with the enzyme to produce ring-size engineered siderophores and secondly for a biosynthetic feeding strategy that allows to extract engineered siderophores in the milligram scale. Topics: Antibiosis; Bacterial Proteins; Diamines; Escherichia coli; Hydroxamic Acids; Metabolic Engineering; Movement; Peptides, Cyclic; Putrescine; Recombinant Proteins; Shewanella; Siderophores; Succinates; Vibrio alginolyticus | 2020 |
One Enzyme To Build Them All: Ring-Size Engineered Siderophores Inhibit the Swarming Motility of Vibrio.
Bacteria compete for ferric iron by producing siderophores, and some microbes engage in piracy by scavenging siderophores of their competitors. The macrocyclic hydroxamate siderophore avaroferrin of Shewanella algae inhibits swarming of Vibrio alginolyticus by evading this piracy. Avaroferrin, as well as related putrebactin and bisucaberin, are produced by the IucC-like synthetases AvbD, PubC, and BibC Topics: Hydroxamic Acids; Macrocyclic Compounds; Peptides, Cyclic; Putrescine; Shewanella; Siderophores; Substrate Specificity; Succinates; Vibrio | 2018 |
Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V).
Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH Topics: Bacterial Proteins; Cadaverine; Chromium; Coordination Complexes; Diamines; Electron Spin Resonance Spectroscopy; Gene Expression; Hydroxamic Acids; Iron; Molybdenum; Ornithine Decarboxylase; Ornithine Decarboxylase Inhibitors; Peptides, Cyclic; Putrescine; Shewanella putrefaciens; Succinates | 2016 |
Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.
To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical conversions across the double bond(s) of the unsaturated macrocycles provides a new route to increased molecular diversity in this class of siderophore. Topics: Chromatography, Liquid; Hydroxamic Acids; Macrocyclic Compounds; Mass Spectrometry; Models, Molecular; Molecular Structure; Peptides, Cyclic; Putrescine; Shewanella putrefaciens; Siderophores; Succinates | 2014 |