pulegone has been researched along with piperitenone* in 6 studies
6 other study(ies) available for pulegone and piperitenone
Article | Year |
---|---|
Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii Jamzad growing wild and cultivated in Iran.
The aerial parts of wild and cultivated Mentha mozaffarianii Jamzad were collected at full flowering stage from two provinces (Hormozgan and Fars) of Iran. The essential oils were extracted by a Clevenger approach and analysed using GC and GC-MS. The main components in wild plants were piperitenone (33.85%), piperitone (21.18%), linalool (6.89%), pulegone (5.93%), 1, 8.cineole (5.49%), piperitenone oxide (5.17%) and menthone (4.69%) and in cultivated plants, cis-piperitone epoxide (28.89%), linalool (15.36%), piperitone (11.57%), piperitenone oxide (10.14%), piperitenone (8.42%),1,8-cineole (3.60%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of M. mozaffarianii was studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans. The results of the bioassays showed that the oil exhibited high antimicrobial activity against all the tested pathogens. Topics: Acyclic Monoterpenes; Anti-Infective Agents; Candida albicans; Cyclohexane Monoterpenes; Cyclohexanols; Eucalyptol; Gas Chromatography-Mass Spectrometry; Iran; Mentha; Menthol; Microbial Sensitivity Tests; Monoterpenes; Oils, Volatile; Plant Components, Aerial; Plants, Medicinal; Staphylococcus aureus | 2018 |
Intraspecific variability of the essential oil of Calamintha nepeta subsp. nepeta from Southern Italy (Apulia).
The essential oil of 46 spontaneous plants of Calamintha nepeta (L.) Savi subsp. nepeta growing wild in Sud, Italy (Salento, Apulia), were investigated by GC/MS. Fifty-seven components were identified in the oil representing over the 98% of the total oil composition. Four chemotypes were identified: piperitone oxide, piperitenone oxide, piperitone-menthone and pulegone. Topics: Cyclohexane Monoterpenes; Gas Chromatography-Mass Spectrometry; Italy; Monoterpenes; Nepeta; Oils, Volatile | 2013 |
Chemical and morphological diversity in wild populations of Mentha longifolia in Israel.
Populations of Mentha longifolia, an endangered species in Israel, were tested for essential oil composition and conservational ability. In 2002-2003, 25 wild populations country-wide were tested, indicating population divergence into two chemotypes. Chemotype A was characterized by high levels of menthone and pulegone, and chemotype B by high levels of piperitenone oxide and piperitone oxide. Chemotype A was more abundant (22 of 25 populations) than chemotype B (11 of 25 populations). However, a chemotype/population interaction was not recorded (P > 0.05). In spring 2003, seven of the 25 wild populations were resampled, propagated, and cultivated at the Newe Ya'ar campus. Then, in 2004, the propagated plants were tested for essential oil composition. The propagated plants maintained the essential oil composition as well as the chemotype-frequency distribution of the original wild population from which they were obtained. Since a chemotype/population interaction was not recorded, and the cultivated plants displayed the wild population essential oil composition, it can be concluded that i) the chemotype diversity is genetically based, and ii) the M. longifolia populations sampled can be horticulturally conserved. Topics: Cyclohexane Monoterpenes; Israel; Mentha; Menthol; Monoterpenes; Oils, Volatile | 2012 |
In vitro production of M. × piperita not containing pulegone and menthofuran.
The essential oils (EOs) and static headspaces (HSs) of in vitro plantlets and callus of Mentha x piperita were characterized by GC-MS analysis. Leaves were used as explants to induce in vitro plant material. The EO yields of the in vitro biomass were much lower (0.1% v/w) than those of the parent plants (2% v/w). Many typical mint volatiles were emitted by the in vitro production, but the callus and in vitro plantelet EOs were characterized by the lack of both pulegone and menthofuran. This was an important difference between in vitro and in vivo plant material as huge amounts of pulegone and menthofuran may jeopardise the safety of mint essential oil. Regarding the other characteristic volatiles, menthone was present in reduced amounts (2%) in the in vitro plantlets and was not detected in the callus, even if it represented the main constituent of the stem and leaf EOs obtained from the cultivated mint (26% leaves; 33% stems). The M. piperita callus was characterized by menthol (9%) and menthone (2%), while the in vitro plantlet EO showed lower amounts of both these compounds in favour of piperitenone oxide (45%). Therefore, the established callus and in vitro plantlets showed peculiar aromatic profiles characterized by the lack of pulegone and menthofuran which have to be monitored in the mint oil for their toxicity. Topics: Cell Culture Techniques; Cyclohexane Monoterpenes; Gas Chromatography-Mass Spectrometry; Mentha piperita; Menthol; Monoterpenes; Oils, Volatile; Plant Leaves; Plant Oils; Plant Stems; Volatile Organic Compounds | 2012 |
Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae).
Aerial parts of wild Calamintha nepeta (L.) Savi subsp. nepeta growing spontaneously on the Mediterranean coast (Sardinia Island, Italy) and on the Atlantic coast (Portugal) were used as a matrix for the supercritical extraction of volatile oil with CO(2). The collected extracts were analysed by GC-FID and GC-MS methods and their compositions were compared with that of the essential oil isolated by hydrodistillation, but the differences were not relevant. A strong chemical variability was observed in the essential oils depending on the origin of the samples. The results showed the presence of two chemotypes of C. nepeta. In all Italian samples, pulegone, piperitenone oxide and piperitenone were the main components (64.4-39.9%; 2.5-19.1%; 6.4-7.7%); conversely, the oil extracted from Portuguese C. nepeta is predominantly composed of isomenthone (35.8-51.3%), 1,8-cineole (21.1-21.4%) and trans-isopulegone (7.8-6.0%). The minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) were used to evaluate the antifungal activity of the oils against Candida albicans, Candida tropicalis, Candida krusei, Candida guillermondii, Candida parapsilosis, Cryptococcus neoformans, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Epidermophyton floccosum, Aspergillus niger, Aspergillus fumigatus and Aspergillus flavus. The Italian oil, rich in pulegone, exhibited significant antifungal activity against Aspergillus and dermatophyte strains, with MIC values of 0.32-1.25 µL mL(-1). Topics: Antifungal Agents; Cyclohexane Monoterpenes; Gas Chromatography-Mass Spectrometry; Italy; Lamiaceae; Microbial Sensitivity Tests; Mitosporic Fungi; Monoterpenes; Oils, Volatile; Plant Components, Aerial; Portugal | 2010 |
Metabolism of monoterpenes: demonstration that (+)-cis-isopulegone, not piperitenone, is the key intermediate in the conversion of (-)-isopiperitenone to (+)-pulegone in peppermint (Mentha piperita).
Piperitenone is commonly considered to be the key intermediate in the conversion of (-)-isopiperitenone to (+)-pulegone in peppermint; however, [3H]piperitenone gave rise only to the inert metabolite (+)-piperitone when incubated with peppermint leaf discs. Under identical conditions, (-)-[3H]isopiperitenone was efficiently incorporated into (+)-pulegone, (-)-menthone, and (+)-isomenthone in leaf discs, and yielded an additional metabolite identified as (+)-cis-isopulegone; piperitenone was poorly labeled. Moreover, (+)-cis-[3H]isopulegone was rapidly converted to (+)-pulegone, (-)-menthone, and (+)-isomenthone in leaf discs, and the reduction of (+)-[3H]pulegone to (-)-menthone and (+)-isomenthone was similarly documented. Each step of the pathway was demonstrated in a crude soluble preparation from peppermint leaf epidermis and each of the relevant enzymes was partially purified in order to compare relative rates of catalysis. The results of these studies indicate that the endocyclic double bond of (-)-isopiperitenone is reduced to yield (+)-cis-isopulegone, which is isomerized to (+)-pulegone as the immediate precursor of (-)-menthone and (+)-isomenthone, and they rule out piperitenone as an intermediate of the pathway. Topics: Biotransformation; Cell-Free System; Chromatography, Gas; Cyclohexane Monoterpenes; Menthol; Monoterpenes; Oxidation-Reduction; Plants; Stereoisomerism; Terpenes | 1986 |