psi-6130 has been researched along with telaprevir* in 2 studies
2 other study(ies) available for psi-6130 and telaprevir
Article | Year |
---|---|
New directly acting antivirals for hepatitis C: potential for interaction with antiretrovirals.
Recent advances in the development of agents that act specifically to inhibit hepatitis C virus (HCV) are set to fundamentally change the way that patients will be treated. New directly acting anti-HCV agents such as protease and polymerase inhibitors will initially be added to standard of care with pegylated interferon-alpha and ribavirin. However, future therapy is likely to constitute combinations of agents which act at distinct stages of viral replication and have differing resistance profiles. While directly acting anti-HCV agents will undoubtedly improve treatment outcomes, the introduction of combination therapy may not be without complications in some patient groups. HIV-positive patients who are receiving antiretrovirals (ARVs) are relatively highly represented among those with HCV infection, and are at high risk of drug-drug interactions (DDIs). As combination anti-HCV treatment gradually evolves to resemble anti-HIV therapy, it is essential to consider the increased potential for DDIs in patients receiving combination anti-HCV therapy, and particularly in HCV/HIV-co-infected individuals. Therapeutic drug monitoring is likely to play a role in the clinical management of such interactions. Topics: Anti-HIV Agents; Antiviral Agents; Clinical Trials as Topic; Deoxycytidine; Drug Interactions; Drug Monitoring; Drug Therapy, Combination; Hepatitis C; HIV Infections; Humans; Oligopeptides; Proline | 2010 |
The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to nonnucleoside polymerase or protease inhibitors.
Specific inhibitors of hepatitis C virus (HCV) replication that target the NS3/4A protease (e.g., VX-950) or the NS5B polymerase (e.g., R1479/R1626, PSI-6130/R7128, NM107/NM283, and HCV-796) have advanced into clinical development. Treatment of patients with VX-950 or HCV-796 rapidly selected for drug-resistant variants after a 14-day monotherapy treatment period. However, no viral resistance was identified after monotherapy with R1626 (prodrug of R1479) or NM283 (prodrug of NM107) after 14 days of monotherapy. Based upon the rapid selection of resistance to the protease and nonnucleoside inhibitors during clinical trials and the lack of selection of resistance to the nucleoside inhibitors, we used the replicon system to determine whether nucleoside inhibitors demonstrate a higher genetic barrier to resistance than protease and nonnucleoside inhibitors. Treatment of replicon cells with nucleoside inhibitors at 10 and 15 times the 50% effective concentration resulted in clearance of the replicon, while treatment with a nonnucleoside or protease inhibitor selected resistant colonies. In combination, the presence of a nucleoside inhibitor reduced the frequency of colonies resistant to the other classes of inhibitors. These results indicate that the HCV replicon presents a higher barrier to the selection of resistance to nucleoside inhibitors than to nonnucleoside or protease inhibitors. Furthermore, the combination of a nonnucleoside or protease inhibitor with a nucleoside polymerase inhibitor could have a clear clinical benefit through the delay of resistance emergence. Topics: Antiviral Agents; Cytidine; Deoxycytidine; Drug Resistance, Viral; Hepacivirus; Nucleosides; Oligopeptides; Protease Inhibitors; Replicon; Serine Endopeptidases; Viral Nonstructural Proteins; Virus Replication | 2008 |