prothioconazole has been researched along with tebuconazole* in 10 studies
10 other study(ies) available for prothioconazole and tebuconazole
Article | Year |
---|---|
Effects of a prothioconazole- and tebuconazole-based fungicide on the yield, silage characteristics, and fungal mycobiota of corn harvested and conserved as whole-crop and high-moisture ear silages.
To analyze the effect of a prothioconazole- and tebuconazole-based fungicide on the yield and silage characteristics of whole-crop corn (WCC) and high-moisture ear corn (HMC) silages and on the fungal community dynamics from the harvest to aerobic exposure.. Corn were untreated (NT) or treated (T) with a prothioconazole- and tebuconazole-based fungicide and harvested as WCC and HMC. Silages were conserved for 60 and 160 d and subjected to an aerobic stability test. The fungicide increased the yield per hectare however, it did not affect the main nutritional characteristics of WCC or HMC. The main chemical, fermentative and microbial characteristics, dry matter (DM) losses and aerobic stability were mainly affected by the conservation time, regardless of the treatment. Fusarium, Alternaria, Aspergillus, and Penicillium genera were identified as dominant before ensiling, but Aspergillus and Penicillium became dominant after silo opening and aerobic exposure. Yeast population during ensiling and aerobic deterioration resulted in a simplification, with Pichia and Kazachstania genera being dominant.. The application of fungicide improved the DM, starch, and net energy for lactation (NEL) yield per hectare but had no consistent effect on the microbial and fermentative silage quality and aerobic stability. Topics: Aerobiosis; Fermentation; Fungicides, Industrial; Silage; Zea mays | 2023 |
Leaching of 1,2,4-triazole from commercial barley seeds coated with tebuconazole and prothioconazole.
Seed dressing with fungicide or insecticide is a standard procedure for growing major crops, but very little is known about the leaching risk and the general fate of pesticides from coated seeds. Triazole fungicides are commonly used seed dressing fungicides and recently, there has been increasing concern that 1,2,4-triazole, a major degradation product of several triazole fungicides, may leach to groundwater in concentrations exceeding the 0.1 μg/L threshold limit of the European Union. We therefore carried out a laboratory column experiment with commercial barley seeds coated with the triazole fungicides tebuconazole and prothioconazole to study the fate of the fungicides and their degradation products, especially 1,2,4-triazole. Our experiment showed that the fungicides themselves were relatively immobile in the soil columns, but also that leaching of 1,2,4-triazole will occur no matter if tebuconazole or prothioconazole is used as seed dressing. Relatively high 1,2,4-triazole concentrations (up to 0.8 μg/L) were measured in the column leachates, but when the experiment was terminated after 63 days, a total of only 1 % of the fungicides was recovered as 1,2,4-triazole in the leachate. Our results suggest that seed dressing pesticides should be considered together with spray applications when estimating the total 1,2,4-triazole load from agriculture and that seed dressing pesticides and their degradation products should be included when evaluating leaching risks from pesticide applications in agriculture. Topics: Fungicides, Industrial; Hordeum; Seeds; Triazoles | 2022 |
Integrated Effects of Genetic Resistance and Prothioconazole + Tebuconazole Application Timing on Fusarium Head Blight in Wheat.
Integrated Fusarium head blight (FHB) management programs consisting of different combinations of cultivar resistance class and an application of the fungicide prothioconazole + tebuconazole at or after 50% early anthesis were evaluated for efficacy against FHB incidence (INC; percentage of diseased spikes), index (IND; percentage of diseased spikelets per spike), Fusarium damaged kernel (FDK), deoxynivalenol (DON) toxin contamination, grain yield, and test weight (TW) in inoculated field trials conducted in 11 U.S. states in 2014 and 2015. Mean log response ratios and corresponding percent control values for INC, IND, FDK, and DON, and mean differences in yield and TW relative to a nontreated, inoculated susceptible check (S_CK), were estimated through network meta-analyses as measures of efficacy. Results from the analyses were then used to estimate the economic benefit of each management program for a range of grain prices and fungicide applications costs. Management programs consisting of a moderately resistant (MR) cultivar treated with the fungicide were the most efficacious, reducing INC by 60 to 69%, IND by 71 to 76%, FDK by 66 to 72%, and DON by 60 to 64% relative to S_CK, compared with 56 to 62% for INC, 68 to 72% for IND, 66 to 68% for FDK, and 58 to 61% for DON for programs with a moderately susceptible (MS) cultivar. The least efficacious programs were those with a fungicide application to a susceptible (S) cultivar, with less than a 45% reduction of INC, IND, FDK, or DON. All programs were more efficacious under conditions favorable for FHB compared with less favorable conditions, with applications made at 50% early anthesis being of comparable efficacy to those made 2 to 7 days later. Programs with an MS cultivar resulted in the highest mean yield increases relative to S_CK (541 to 753 kg/ha), followed by programs with an S cultivar (386 to 498 kg/ha) and programs with an MR cultivar (250 to 337 kg/ha). Integrated management programs with an MS or MR cultivar treated with the fungicide at or after 50% early anthesis were the most likely to result in a 50 or 75% control of IND, FDK, or DON in a future trial. At a fixed fungicide application cost, these programs were $4 to $319/MT more economically beneficial than corresponding fungicide-only programs, depending on the cultivar and grain price. These findings demonstrate the benefits of combining genetic resistance with a prothioconazole + tebuconazole treatment to manage FHB, even if that tr Topics: Disease Resistance; Fungicides, Industrial; Fusarium; Plant Diseases; Triazoles; Triticum | 2019 |
Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina.
Fusarium head blight (FHB) caused by Fusarium graminearum species complex is a devastating disease that causes extensive yield and quality losses to wheat around the world. Fungicide application and breeding for resistance are among the most important tools to counteract FHB. Biological control is an additional tool that can be used as part of an integrated management of FHB. Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B were selected by their potential to control FHB and deoxynivalenol production. The aim of this work was to test the tolerance of these biocontrol agents to triazole-based fungicides such as prothioconazole, tebuconazole and metconazole. Bacterial growth was evaluated in Petri dishes using the spread plating technique containing the different fungicides. Bacillus velezensisRC 218 and Streptomyces sp. RC 87B showed better tolerance to fungicides than Brevibacillus sp. RC 263. Complete growth inhibition was observed at concentrations of 20 μg ml. This study evaluates the possibility to use biocontrol agents (Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B) in combination with triazole-based fungicides to control Fusarium head blight in wheat. The evaluation of biocontrol agents' growth under in vitro conditions was carried out in Petri dishes containing either prothioconazole, tebuconazole or metconazole. Viability studies demonstrated that B. velezensisRC 218 and Streptomyces sp. RC 87B were more tolerant to the fungicides evaluated. Results obtained reflect the possibility to use fungicides at low doses combined with biocontrol agents. Topics: Antibiosis; Argentina; Bacillus; Biological Control Agents; Brevibacillus; Fungicides, Industrial; Fusarium; Plant Diseases; Streptomyces; Triazoles; Trichothecenes; Triticum | 2018 |
Effects of Pre- and Postanthesis Applications of Demethylation Inhibitor Fungicides on Fusarium Head Blight and Deoxynivalenol in Spring and Winter Wheat.
Anthesis is generally recommended as the optimum growth stage for applying a foliar fungicide to manage Fusarium head blight (FHB) and the Fusarium-associated toxin deoxynivalenol (DON) in wheat. However, because it is not always possible to treat fields at anthesis, studies were conducted to evaluate pre- and postanthesis treatment options for managing FHB and DON in spring and winter wheat. Network meta-analytical models were fitted to data from 19 years of fungicide trials, and log response ratio ([Formula: see text]) and approximate percent control ([Formula: see text]) relative to a nontreated check were estimated as measures of the effects of six treatments on FHB index (IND: mean percentage of diseased spikelets per spike) and DON. The evaluated treatments consisted of either Caramba (metconazole) applied early (at heading [CE]), at anthesis (CA), or late (5 to 7 days after anthesis; CL), or Prosaro (prothioconazole + tebuconazole) applied at the same three times and referred to as PE, PA, and PL, respectively. All treatments reduced mean IND and DON relative to the nontreated check, but the magnitude of the effect varied with timing and wheat type. CA and PA resulted in the highest [Formula: see text] values for IND, 52.2 and 51.5%, respectively, compared with 45.9% for CL, 41.3% for PL, and less than 33% for CE and PE. Anthesis and postanthesis treatments reduced mean IND by 14.9 to 29.7% relative to preanthesis treatments. The estimated effect size was also statistically significant for comparisons between CA and CL and PA and PL; CA reduced IND by 11.7% relative to CL, whereas PA reduced the disease by 17.4% relative to PL. Differences in efficacy against IND between pairs of prothioconazole + tebuconazole and metconazole treatments applied at the same timing (CE versus PE, CA versus PA, and CL versus PL) were not statistically significant. However, CA and CL outperformed PA and PL by 7 and 12.8%, respectively, in terms of efficacy against DON. All application programs had comparable efficacy against IND between spring and winter wheat types, but efficacy against DON was 10 to 16% greater for spring than winter wheat for applications made at or after anthesis. All programs led to an increase in mean grain yield and test weight relative to the nontreated check. Topics: Demethylation; Fungicides, Industrial; Fusarium; Plant Diseases; Triazoles; Trichothecenes; Triticum | 2018 |
Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field.
Late wilt, a disease severely affecting maize fields throughout Israel, is characterized by relatively rapid wilting of maize plants before tasseling and until shortly before maturity. The disease's causal agent is the fungus Harpophora maydis, a soil-borne and seed-borne pathogen, which is currently controlled using reduced sensitivity maize cultivars. In a former study, we showed that Azoxystrobin (AS) injected into a drip irrigation line assigned for each row can suppress H. maydis in the field and that AS seed coating can provide an additional layer of protection. In the present study, we examine a more cost-effective protective treatment using this fungicide with Difenoconazole mixture (AS+DC), or Fluazinam, or Fluopyram and Trifloxystrobin mixture, or Prothioconazole and Tebuconazole mixture in combined treatment of seed coating and a drip irrigation line for two coupling rows. A recently developed Real-Time PCR method revealed that protecting the plants using AS+DC seed coating alone managed to delay pathogen DNA spread in the maize tissues, in the early stages of the growth season (up to the age of 50 days from sowing), but was less effective in protecting the crops later. AS+DC seed coating combined with drip irrigation using AS+DC was the most successful treatment, and in the double-row cultivation, it reduced fungal DNA in the host tissues to near zero levels. This treatment minimized the development of wilt symptoms by 41% and recovered cob yield by a factor of 1.6 (to the level common in healthy fields). Moreover, the yield classified as A class (cob weight of more than 250 g) increased from 58% to 75% in this treatment. This successful treatment against H. maydis in Israel can now be applied in vast areas to protect sensitive maize cultivars against maize late wilt disease. Topics: Acetates; Antifungal Agents; Ascomycota; Benzamides; Dioxolanes; Imines; Plant Diseases; Pyridines; Strobilurins; Triazoles; Zea mays | 2018 |
Distribution of prothioconazole and tebuconazole between wheat ears and flag leaves following fungicide spraying with different nozzle types at flowering.
Wheat ears are difficult targets from the aspect of fungicide spraying. Sideward-spraying nozzle types may enhance the ear coverage, which may possibly lead to higher effectiveness in the management of Fusarium head blight (FHB).. On average, sideward-spraying Turbo TeeJet Duo nozzles resulted in 1.30 and 1.43 times higher prothioconazole-desthio and tebuconazole contents and Turbo FloodJet nozzles in 1.08 and 1.34 times higher prothioconazole-desthio and tebuconazole contents in wheat ears by comparison with those achieved with vertically-spraying XR TeeJet nozzles. In contrast, the vertically-spraying XR TeeJet nozzles resulted in 1.57 and 1.31 times higher prothioconazole-desthio and tebuconazole contents in the flag leaf blade. The degradation of the active ingredient (AI) depended on the year, the cultivar and the plant organ, but not on the spraying method. There was no clear relationship between the efficacy of a given nozzle type and the outcome of the FHB epidemic.. The ear coverage and therefore the AI content have been improved with the two sideward-spraying nozzle types. There was no effective translocation of the AI content between the ears and flag leaf blades. Prothioconazole and tebuconazole proved to be highly effective in the management of FHB, but the FHB resistance of the cultivar was also decisive. Topics: Fungicides, Industrial; Fusarium; Plant Diseases; Plant Leaves; Seeds; Triazoles; Triticum | 2015 |
Translocation and degradation of tebuconazole and prothioconazole in wheat following fungicide treatment at flowering.
Prothioconazole and tebuconazole are among the most effective fungicides against Fusarium head blight (FHB) of wheat (Triticum aestivum L.). The translocation between the ears and the flag leaves and the kinetics of degradation may influence field efficacy of these active ingredients (AIs).. In greenhouse experiments, only traces (<1%) of the total AI content translocated from the flag leaves to the ears, and a maximum of 3.55% from the ears to the flag leaves. From the treated to the non-treated side of the ears, 3.2-15.9% of the AI translocated, depending on cultivar, AI and time. In field experiments, the degradation kinetics in the first 8 days after treatment revealed a higher velocity in the flag leaf blades than in the ears, although both were dependent on the type of cultivar. The fungicide treatment resulted in 42.6-100% decreases in FHB traits.. There is no effective translocation of these AIs, only moderate redistribution in the ears, which can be decisive from the aspect of FHB management. The degradation of prothioconazole was faster than that of tebuconazole. Cultivar and environmental effects influenced the degradation kinetics of these AIs, but a high level of protection against FHB was maintained. Topics: Fungicides, Industrial; Fusarium; Kinetics; Pest Control; Plant Diseases; Triazoles; Triticum | 2013 |
Effect of triazole pesticide formulation on bovine culture cells.
To date, most data about the possible genotoxic effect of triazole pesticides are focused on laboratory animals resulting in limited information on further non-target organisms such as cattle. The objective of the present study was to investigate the effect of triazole (tebuconazole/prothioconazole) fungicide formulation on the induction of chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and DNA fragmentation in bovine cultured lymphocytes. Our results showed that the fungicide formulation did not induce significant number of CAs in bovine cells after 24 h treatment. Nevertheless, the dose-dependent reduction of mitotic division was observed, with the strongest effect at 30.0 μg mL(-1) in both donors (P < 0.01 and P < 0.001, respectively). Prolonged 48 h exposure caused the increased level of breaks in treated cultures (3.0-15.0 μg mL(-1); P < 0.05) and significant decrease in mitotic index (MI). The tested fungicide failed to produce any statistical changes in the SCE frequency neither after 24 h nor 48 h treatment. However, the significant decline of the proliferation index (PI) was observed after 24 h indicating the fungicide influence on cell cycle kinetics. Prolonged 48 h exposure caused cytotoxicity reflecting in lower PI value relative to control mainly at the highest fungicide concentrations (30.0 μg mL(-1), P < 0.001). Using painting probes for bovine chromosomes 1, 5 and 7 (BTA1, BTA5 and BTA7) only low levels of aneuploidies were detected. Significant increase of polyploidy cells (P < 0.05) was induced by a 3.0 μg mL(-1) dose of the fungicide after 48 h. DNA fragmentation assay didn't reveal the presence of DNA nucleosome ladder in cell cultures at any time (24 h and 48 h) and fungicide concentration. Topics: Animals; Cattle; Cell Proliferation; Cells, Cultured; Chemistry, Pharmaceutical; Chromosome Aberrations; DNA Fragmentation; Fungicides, Industrial; Lymphocytes; Mitotic Index; Mutagens; Triazoles | 2013 |
Efficacy of triazole-based fungicides for fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis.
The effects of propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole (as a tank mix or a formulated premix) on the control of Fusarium head blight index (IND; field or plot-level disease severity) and deoxynivalenol (DON) in wheat were determined. A multivariate random-effects meta-analytical model was fitted to the log-transformed treatment means from over 100 uniform fungicide studies across 11 years and 14 states, and the mean log ratio (relative to the untreated check or tebuconazole mean) was determined as the overall effect size for quantifying fungicide efficacy. Mean log ratios were then transformed to estimate mean percent reduction in IND and DON relative to the untreated check (percent control: C(IND) and C(DON)) and relative to tebuconazole. All fungicides led to a significant reduction in IND and DON (P < 0.001), although there was substantial between-study variability. Prothioconazole+tebuconazole was the most effective fungicide for IND, with a C(IND) of 52%, followed by metconazole (50%), prothioconazole (48%), tebuconazole (40%), and propiconazole (32%). For DON, metconazole was the most effective treatment, with a [Formula: see text](DON) of 45%; prothioconazole+tebuconazole and prothioconazole showed similar efficacy, with C(DON) values of 42 and 43%, respectively; tebuconazole and propiconazole were the least effective, with C(DON) values of 23 and 12%, respectively. All fungicides, with the exception of propiconazole, were significantly more effective than tebuconazole for control of both IND and DON (P < 0.001). Relative to tebuconazole, prothioconazole, metconazole, and tebuconzole+prothioconzole reduced disease index a further 14 to 20% and DON a further 25 to 29%. In general, fungicide efficacy was significantly higher for spring wheat than for soft winter wheat studies; depending on the fungicide, the difference in percent control between spring and soft winter wheat was 5 to 20% for C(IND) and 7 to 16% for C(DON). Based on the mean log ratios and between-study variances, the probability that IND or DON in a treated plot from a randomly selected study was lower than that in the check by a fixed margin was determined, which confirmed the superior efficacy of prothioconazole, metconazole, and tebuconzole+prothioconzole for Fusarium head blight disease and toxin control. Topics: Fungicides, Industrial; Fusarium; Meta-Analysis as Topic; Midwestern United States; Multivariate Analysis; Plant Diseases; Triazoles; Trichothecenes; Triticum | 2008 |