prostaglandin-h2 has been researched along with 13-azaprostanoic-acid* in 6 studies
6 other study(ies) available for prostaglandin-h2 and 13-azaprostanoic-acid
Article | Year |
---|---|
Reversal of thromboxane A2/prostaglandin H2 and ADP-induced calcium release in intact platelets.
We previously demonstrated that thromboxane A2 and/or prostaglandin H2 (TXA2/PGH2), ADP, and A23187 cause calcium mobilization in intact human platelets. Other studies have also shown that platelet shape change and aggregation induced by a variety of platelet agonists can be reversed by specific antagonists. In the present study, we used the fluorescent calcium probe chlortetracycline to evaluate whether the reversal of platelet activation involves a resequestration of intraplatelet calcium. It was found that the TXA2/PGH2 receptor antagonist 13-azaprostanoic acid (13-APA) reversed calcium mobilization and shape change induced by AA but not that induced by ADP. A similar specificity of action was observed using the specific ADP receptor antagonist, ATP, in that ATP only reversed ADP-induced calcium release and shape change. In contrast, prostacyclin reversed both AA and ADP-induced calcium redistribution and shape change. In the latter experiments, a net calcium sequestration was actually observed on prostacyclin addition. These findings indicate that the resequestration of released calcium leads to platelet deactivation. Furthermore, there appear to be at least two mechanisms by which a reduction in cytosolic calcium can be produced: specific interruption of the agonist-receptor interaction, for example, 13-APA antagonism of TXA2/PGH2; and stimulation of platelet adenosine 3',5'-cyclic monophosphate production by prostacyclin and consequent calcium sequestration. Topics: Adenosine Diphosphate; Adenosine Triphosphate; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Calcium; Chlortetracycline; Cyclic AMP; Epoprostenol; Humans; Ion Channels; Platelet Aggregation; Prostaglandin Endoperoxides; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Prostanoic Acids; Stimulation, Chemical; Thromboxane A2; Thromboxanes | 1985 |
Thromboxane A2/prostaglandin H2 mobilizes calcium in human blood platelets.
The present study investigated the mechanism by which thromboxane A2/prostaglandin H2 (TXA2/PGH2) stimulates platelet activation. Previous studies in isolated platelet vesicles have suggested that TXA2/PGH2 functions to release calcium from intraplatelet stores. On this basis, we investigated whether TXA2/PGH2 causes mobilization of calcium in intact platelets. Calcium redistribution was measured using the fluorescent probe, chlortetracycline (CTC), and a photon-counting microspectrofluorometer. Human platelet-rich plasma was incubated with CTC (50 microM) for 40 min at 25 degrees C. Shape change was induced with arachidonic acid (AA, 100 microM) or ADP (0.75-1.0 microM). It was found that AA addition resulted in a significant release of intraplatelet calcium. This release was blocked by inhibition of the cyclooxygenase with indomethacin (20 microM) or the specific TXA2/PGH2 antagonist, 13-azaprostanoic acid (13-APA, 100 microM). On the other hand, neither indomethacin nor 13-APA had any effect on calcium release stimulated by ADP. However, prostacyclin (13 nM) inhibited both AA- and ADP-induced calcium release. These findings provide evidence that cyclooxygenase products of AA, i.e., TXA2 and/or PGH2 directly caused the mobilization of intraplatelet calcium. Furthermore, this calcium mobilization appears to be mediated through a specific TXA2/PGH2 receptor interaction. Topics: Adenosine Diphosphate; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Calcium; Chlortetracycline; Epoprostenol; Humans; Indomethacin; Platelet Aggregation; Prostaglandin Endoperoxides; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Prostanoic Acids; Stimulation, Chemical; Thromboxane A2; Thromboxanes | 1985 |
Arachidonic acid-induced platelet aggregation is mediated by a thromboxane A2/prostaglandin H2 receptor interaction.
The mechanism by which the active metabolites of arachidonic acid (AA), i.e., thromboxane A2 and/or prostaglandin H2 (TXA2/PGH2) induce platelet aggregation is not understood. Several reports have suggested that AA-stimulated aggregation is mediated by secreted ADP, whereas other studies have proposed that this response is ADP-independent. In the present report, we used the specific TXA2/PGH2 receptor antagonist, 13-azaprostanoic acid (13-APA), and the ADP antagonist, ATP, to examine the contribution of TXA2/PGH2 or secreted ADP to aggregation. We found that 13-APA, but not ATP, deaggregates platelets stimulated by AA or U46619 (a TXA2/PGH2 mimetic). In contrast, ADP-induced aggregation was reversed in response to ATP but not to 13-APA. These results suggest that TXA2/PGH2-stimulated aggregation is mediated through TXA2/PGH2 receptor occupation. Furthermore, secreted ADP does not appear to be required for maintenance of the AA-aggregation response. Topics: Adenosine Diphosphate; Adenosine Triphosphate; Arachidonic Acid; Arachidonic Acids; Drug Interactions; Humans; In Vitro Techniques; Platelet Aggregation; Prostaglandin Endoperoxides; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Prostanoic Acids; Receptors, Cell Surface; Receptors, Prostaglandin; Receptors, Thromboxane; Thromboxane A2; Thromboxanes | 1984 |
Antagonism of thromboxane A2/prostaglandin H2 by 13-azaprostanoic acid prevents platelet deposition to the de-endothelialized rabbit aorta in vivo.
The present study evaluated the direct involvement of thromboxane A2/prostaglandin H2 (TXA2/PGH2) in the process of thrombus formation at a site of vascular damage. De-endothelialization of the rabbit aorta was performed by a balloon catheter technique. Platelet deposition to the injured vessel was measured using 111Indium-labeled autologous platelets. Studies using the radiolabeled TXA2/PGH2 antagonist, 13-azaprostanoic acid (13-APA), indicated that 13-APA has an in vivo half-life of approximately 35 min and is excreted by the kidney in the metabolized form. Addition of 13-APA to rabbit plasma samples in vitro produced a dose-dependent inhibition of arachidonic acid-induced platelet aggregation. When comparable plasma levels of 13-APA were achieved by infusion of 13-APA (300 micrograms/kg/min for 90 min), a similar dose-dependency of inhibition of ex vivo aggregation was observed. Furthermore, at a plasma concentration of 40 microM, 13-APA was found to inhibit platelet deposition to the de-endothelialized rabbit aorta by 45%. Because 13-APA does not interfere with arachidonic acid metabolism, the ability of 13-APA to suppress thrombus formation is presumably due to direct antagonism of TXA2/PGH2 at the platelet receptor level. These findings, therefore, provide evidence that TXA2 and/or PGH2 have a major role in platelet deposition at a site of vascular damage. Topics: Animals; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Fatty Acids; Male; Platelet Aggregation; Prostaglandin Endoperoxides; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Prostanoic Acids; Rabbits; Thrombosis; Thromboxane A2; Thromboxanes | 1984 |
Specific binding of the thromboxane A2 antagonist 13-azaprostanoic acid to human platelet membranes.
In the present study we characterized the interaction between the thromboxane A2/prostaglandin H2 antagonist, trans-13-azaprostanoic acid (13-APA), and isolated human platelet membranes. In these studies, we developed a binding assay using trans [3H] 13-APA as the ligand. It was found that trans [3H] 13-APA specific binding was rapid, reversible, saturable and temperature dependent. Scatchard analysis of the binding data yielded a curvilinear plot which indicated the existence of two classes of binding sites: a high-affinity binding site with an estimated dissociation constant (Kd) of 100 nM; and a low-affinity binding site with an estimated Kd of 3.5 microM. At saturation, approximately 1 pmol/mg protein of [3H] 13-APA was bound to the high affinity site. In order to further characterize the nature of the [3H] 13-APA binding site, we evaluated competitive binding by cis 13-APA, cis 15-APA, prostaglandin F2 alpha, U46619, 6-ketoprostaglandin F1 alpha and thromboxane B2. It was found that the [3H] 13-APA binding site was stereospecific and structurally specific. Thus, the cis isomer of 13-APA exhibited substantially reduced affinity for binding. Furthermore, the prostaglandin derivatives, thromboxane B2 and 6-ketoprostaglandin F1 alpha, which do not possess biological activity, also did not compete for [3H] 13-APA binding. On the other hand, U46619 which acts as a thromboxane A2/prostaglandin H2 mimetic, and prostaglandin F2 alpha which acts as a thromboxane A2/prostaglandin H2 antagonist, both effectively competed for [3H] 13-APA binding. These findings indicate that trans 13-APA binds to a specific site on the platelet membrane which presumably represents the thromboxane A2/prostaglandin H2 receptor. Topics: Binding Sites; Blood Platelets; Cell Membrane; Fatty Acids; Humans; In Vitro Techniques; Kinetics; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Prostanoic Acids; Receptors, Prostaglandin; Receptors, Thromboxane; Thromboxane A2; Thromboxanes | 1983 |
The thromboxane antagonist, 13-azaprostanoic acid, inhibits arachidonic acid-induced Ca2+ release from isolated platelet membrane vesicles.
In the present study we investigated the ability of the arachidonic acid metabolites, prostaglandin H2 and thromboxane A2, to release Ca2+ from isolated platelet vesicles. The vesicles were prepared through modification of previously described procedures. 45Ca uptake and release were determined by Millipore filtration and isotope counting of the filter paper. Incubation of the vesicles (25 degrees C) with 50 microM CaCl2 (plus 45Ca) resulted in the accumulation of 13 nmol Ca2+ per mg of protein under steady-state conditions. Addition of arachidonic acid (25 microM) resulted in a 42% release of the accumulated Ca2+ and the production of 150 ng thromboxane B2/mg protein. Pretreatment of the vesicles with indomethacin (4 microM) completely inhibited arachidonic acid-induced Ca2+ release and reduced thromboxane B2 synthesis by 82%. Pretreatment of the vesicles with the specific thromboxane A2/prostaglandin H2 antagonist, 13-azaprostanoic acid (20 microM), also resulted in complete inhibition of Ca2+ release but no inhibition of thromboxane B2 production. Addition of prostaglandin H2 (0.3 microM) to the platelet vesicles produced a significant release of Ca2+ only in the presence of the adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (100 microM). This Ca2+ release was totally blocked by 13-azaprostanoic acid (20 microM). The thromboxane synthetase inhibitor 9,11-azoprosta-5,13-dienoic acid (azo analog I, 3.6 microM), in the presence of 2',5'-dideoxyadenosine, only slightly inhibited Ca2+ release in response to added prostaglandin H2, even though thromboxane B2 production was blocked by 95%. Topics: Adenosine Triphosphate; Arachidonic Acids; Blood Platelets; Calcium; Cell Membrane; Fatty Acids; Humans; In Vitro Techniques; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Prostanoic Acids; Thromboxane A2; Thromboxanes | 1983 |