prostaglandin-g2 has been researched along with 15-hydroxy-5-8-11-13-eicosatetraenoic-acid* in 4 studies
4 other study(ies) available for prostaglandin-g2 and 15-hydroxy-5-8-11-13-eicosatetraenoic-acid
Article | Year |
---|---|
PGG2, 11R-HPETE and 15R/S-HPETE are formed from different conformers of arachidonic acid in the prostaglandin endoperoxide H synthase-1 cyclooxygenase site.
Topics: Animals; Arachidonic Acid; Chlorocebus aethiops; COS Cells; Cyclooxygenase 1; Cyclooxygenase 2; Humans; Hydroxyeicosatetraenoic Acids; Isoenzymes; Kinetics; Male; Membrane Proteins; Microsomes; Prostaglandin-Endoperoxide Synthases; Prostaglandins G; Recombinant Proteins; Seminal Vesicles; Stereoisomerism; Substrate Specificity; Transfection | 2002 |
Different catalytically competent arrangements of arachidonic acid within the cyclooxygenase active site of prostaglandin endoperoxide H synthase-1 lead to the formation of different oxygenated products.
Arachidonic acid is converted to prostaglandin G(2) (PGG(2)) by the cyclooxygenase activities of prostaglandin endoperoxide H synthases (PGHSs) 1 and 2. The initial, rate-limiting step is abstraction of the 13-proS hydrogen from arachidonate which, for PGG(2) formation, is followed by insertion of O(2) at C-11, cyclization, and a second O( 2) insertion at C-15. As an accompaniment to ongoing structural studies designed to determine the orientation of arachidonate in the cyclooxygenase site, we analyzed the products formed from arachidonate by (a) solubilized, partially purified ovine (o) PGHS-1; (b) membrane-associated, recombinant oPGHS-1; and (c) a membrane-associated, recombinant active site mutant (V349L oPGHS-1) and determined kinetic values for formation of each product. Native forms of oPGHS-1 produced primarily PGG(2) but also several monohydroxy acids, which, in order of abundance, were 11R-hydroxy-5Z, 8Z,12E,14Z-eicosatetraenoic acid (11R-HETE), 15S-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid (15S-HETE), and 15R-HETE. V349L oPGHS-1 formed primarily PGG(2), 15S-HETE, and 15R-HETE but only trace amounts of 11R-HETE. With native enzyme, the K(m) values for PGG(2), 11-HETE, and 15-HETE formation were each different (5.5, 12.1, and 19.4 microM, respectively); similarly, the K(m) values for PGG(2) and 15-HETE formation by V349L oPGHS-1 were different (11 and 5 microM, respectively). These results establish that arachidonate can assume at least three catalytically productive arrangements within the cyclooxygenase site of oPGHS-1 leading to PGG(2), 11R-HETE, and 15S-HETE and/or 15R-HETE, respectively. IC(50) values for inhibition of formation of the individual products by the competitive inhibitor, ibuprofen, were determined and found to be the same for a given enzyme form (i.e. 175 microM for oPGHS-1 and 15 microM for V349L oPGHS-1). These latter results are most simply rationalized by a kinetic model in which arachidonate forms various catalytically competent arrangements only after entering the cyclooxygenase active site. Topics: Animals; Arachidonic Acid; Catalytic Domain; Cyclooxygenase 1; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Hydroxyeicosatetraenoic Acids; Ibuprofen; Isoenzymes; Male; Microsomes; Models, Chemical; Mutagenesis, Site-Directed; Mutation; Prostaglandin-Endoperoxide Synthases; Prostaglandins G; Seminal Vesicles; Sheep; Stereoisomerism | 2000 |
Preparative HPLC purification of prostaglandin endoperoxides and isolation of novel cyclooxygenase-derived arachidonic acid metabolites.
A preparative HPLC purification scheme for the isolation of prostaglandin endoperoxides prepared by short-time incubation of [1-14C]-labelled arachidonic acid (AA) with sheep seminal vesicle microsomes was developed. Milligram quantities of prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2) were obtained in greater than or equal to 95% purity within shortest time. Furthermore, careful application of this HPLC technique led to the isolation of two minor [1-14C]-labelled fractions which according to their spectral and chromatographic characteristics, were identical with 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) and 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE). Another HETE substituted at either C11 or C12 was also present. The formation of these products was mediated by cyclooxygenase as evidenced by aspirin (100 microM) and indomethacin (10 microM) inhibition. Sulfhydryl-blocking agents such as p-hydroxymercuribenzoate (1 mM) and/or the 12-lipoxygenase inhibitor esculetin (100 microM) were without effect. In addition to these AA metabolites four other fractions contained arachidonate-derived endoperoxides with antiaggregatory properties, all of which released malondialdehyde upon incubation with thromboxane A2 synthase. No thromboxane formation was observed although turnover numbers were comparable to those of PGG2 and PGH2. The formation of these endoperoxides did not occur via enzymatic or non-enzymatic degradation of PGG2 or PGH2. The exact chemical nature of these endoperoxides remains to be established. Topics: Animals; Arachidonic Acid; Arachidonic Acids; Chromatography, High Pressure Liquid; Humans; Hydroxyeicosatetraenoic Acids; Leukotrienes; Lipid Peroxides; Male; Microsomes; Platelet Aggregation; Prostaglandin Endoperoxides; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandin-Endoperoxide Synthases; Prostaglandins G; Prostaglandins H; Seminal Vesicles; Sheep | 1987 |
Eicosanoid synthesis by rabbit hydronephrotic cortical interstitial cells in culture.
Rabbit hydronephrotic cortical interstitial cells in primary culture were labeled with [1-14C]arachidonic acid and the eicosanoids released after stimulation with bradykinin or A23187 were studied by reverse-phase high performance liquid chromatography. The major arachidonic acid metabolite formed was prostaglandin (PG)E2, comprising more than 30% of the total radioactivity released. 12-Hydroxyheptadecatrienoic acid, probably representing spontaneous breakdown of the cyclic endoperoxides PGG2 and/or PGH2, made up 10 to 15% of the radioactivity released. Other cyclooxygenase products that were released included PGF2 alpha, PGD2, 6-keto PGF1 alpha and only minute amounts of thromboxane B2. Small quantities of the lipoxygenase products 15-, 12- and 5-hydroxyeicosatetraenoic acids (HETEs) as well as leukotrienes (LT)B4, LTC4 and LTD4 were also identified. Significantly larger quantities of 15- and 5-HETEs were recovered at 2 to 5 min than after longer incubations with A23187, suggesting esterification of these HETEs into cellular phospholipids. The data indicate that interstitial cells of the hydronephrotic kidney synthesize a variety of cyclooxygenase and lipoxygenase products of arachidonic acid, which may contribute to the pathophysiology of hydronephrosis. Moreover, it is suggested that PGG2 and/or PGH2 that are released from these cells may be metabolized further by adjacent kidney cells or circulating blood elements to other eicosanoid products, thus increasing the diversity of eicosanoids synthesized in the hydronephrotic kidney. Topics: Animals; Arachidonic Acid; Arachidonic Acids; Bradykinin; Calcimycin; Cells, Cultured; Chromatography, High Pressure Liquid; Dinoprostone; Eicosanoic Acids; Hydronephrosis; Hydroxyeicosatetraenoic Acids; Kidney Cortex; Leukotrienes; Male; Prostaglandins E; Prostaglandins G; Rabbits; SRS-A; Strontium | 1986 |