prostaglandin-d2 and montelukast

prostaglandin-d2 has been researched along with montelukast* in 3 studies

Other Studies

3 other study(ies) available for prostaglandin-d2 and montelukast

ArticleYear
Potential synergistic effects of novel hematopoietic prostaglandin D synthase inhibitor TAS-205 and different types of anti-allergic medicine on nasal obstruction in a Guinea pig model of experimental allergic rhinitis.
    European journal of pharmacology, 2020, May-15, Volume: 875

    Nasal obstruction is one of the most bothersome symptoms of allergic rhinitis (AR) affecting sleep-related quality of life in AR patients. Although several treatments were tested to control nasal obstruction, some patients with moderate to severe AR do not respond to current treatments, including the combined administration of different types of anti-allergic medicine. Thus, new options for AR treatment are needed. This study aimed to evaluate the effects of combined treatment with a novel inhibitor of hematopoietic prostaglandin D synthase (HPGDS), TAS-205, and different types of anti-allergic medicine on nasal obstruction in AR. Firstly, we demonstrated that TAS-205 selectively inhibited prostaglandin D

    Topics: Acetates; Animals; Anti-Allergic Agents; Cell Line; Cyclopropanes; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Enzyme Inhibitors; Guinea Pigs; Humans; Intramolecular Oxidoreductases; Lipocalins; Male; Morpholines; Nasal Mucosa; Nasal Obstruction; Ovalbumin; Piperidines; Prostaglandin D2; Pyrroles; Quality of Life; Quinolines; Rats; Rhinitis, Allergic; Sulfides; Terfenadine

2020
A prostaglandin D2 receptor antagonist modifies experimental asthma in sheep.
    Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, 2009, Volume: 39, Issue:9

    Prostaglandin (PG) D(2) is the major cylooxygenase metabolite released by mast cells upon allergen stimulation, and elicits responses through either the prostanoid DP1 receptor and/or the chemoattractant receptor homologous molecule expressed on T-helper type 2 (Th2) cells (CRTH2/DP2). Experimental evidence suggests that stimulation of one or both these receptors contributes to asthma pathophysiology.. The aim of this study was to test the hypothesis that the prostanoid DP1 receptor contributes to asthma pathophysiology by determining the efficacy of an orally active antagonist for this receptor, S-5751, on allergen-induced bronchoconstriction, airway hyperresponsiveness (AHR) and cellular inflammation in the sheep model of asthma.. PGD(2)-induced cyclic adenosine monophosphate (cAMP) production in platelet-rich plasma was used to establish the in vitro efficacy of S-5751. In vivo, sheep naturally allergic to Ascaris suum were challenged with an aerosolized antigen with and without S-5751 treatment (given 4 days before and for 6 days after the challenge).. S-5751 inhibited PGD(2)-induced cAMP production in platelet-rich plasma with an IC(50) value of 0.12 microm. S-5751 at 30 mg/kg, but not at 3 mg/kg, reduced the early bronchoconstriction and inhibited the late bronchoconstriction. AHR and inflammatory cell infiltration in bronchoalveolar lavage fluid at days 1 and 7 were also inhibited with the 30 mg/kg dose. The responses observed with S-5751 at 30 mg/kg were comparable with those with montelukast treatment (0.15 mg/kg, twice a day, intravenous); however, S-5751 did not block inhaled leukotrieneD(4)-induced broncoconstriction.. Prostanoid DP1 receptor inhibition may represent an alternative target for asthma therapy.

    Topics: Acetates; Allergens; Animals; Anti-Asthmatic Agents; Asthma; Bronchoalveolar Lavage Fluid; Bronchoconstriction; Cyclic AMP; Cyclopropanes; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Humans; Prostaglandin D2; Quinolines; Receptors, Immunologic; Receptors, Prostaglandin; Sulfides; Thiophenes; Time Factors

2009
Effects of KP-496, a novel dual antagonist for leukotriene D4 and thromboxane A2 receptors, on contractions induced by various agonists in the guinea pig trachea.
    Allergology international : official journal of the Japanese Society of Allergology, 2006, Volume: 55, Issue:4

    A dry powder inhaler of KP-496 is currently in clinical development in Japan as an anti-asthmatic agent. The aim of this study was to evaluate the in vitro pharmacological profile of KP-496.. The antagonistic activities of KP-496 for leukotriene (LT) D(4) and thromboxane (TX) A(2) receptors were examined using the LTD(4)- and U46619-induced contractions of the isolated guinea pig trachea. The selectivity of KP-496 was examined using various agonist-induced contractions in the isolated guinea pig trachea.. KP-496 produced parallel rightward shifts of the LTD(4) and U46619 concentration-response curves in a concentration-dependent manner. Schild plot analyses of the antagonistic activities of KP-496 demonstrated that it is a competitive antagonist for LTD(4) and TXA(2) receptors with pA(2) values of 8.64 and 8.23, respectively. The LTD(4) antagonistic activity of KP-496 was comparable to that of pranlukast and zafirlukast but was more potent than that of montelukast. The TXA(2) antagonistic activity of KP-496 was comparable to that of seratrodast. KP-496 and seratrodast also inhibited the prostaglandin (PG) D(2)- and PGF(2alpha)-induced contractions of the isolated guinea pig trachea. KP-496 had no effect on the histamine-, acetylcholine-, serotonin- and substance P-induced contractions of the isolated guinea pig trachea.. These results indicate that KP-496 is a selective dual antagonist for LTD(4) and TXA(2) receptors. LTD(4) and TXA(2) play important roles in asthma, and antagonists for these mediators are being used for the treatment of asthma. Thus, KP-496 is expected to become a novel potent therapeutic agent for asthma.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetates; Acetylcholine; Albuterol; Animals; Atropine; Benzoquinones; Carbachol; Chromones; Cyclopropanes; Dinoprost; Drug Evaluation, Preclinical; Guinea Pigs; Heptanoic Acids; Histamine; In Vitro Techniques; Indoles; Indomethacin; Ketanserin; Ketotifen; Leukotriene Antagonists; Leukotriene D4; Male; Muscle Contraction; Muscle, Smooth; Phenylcarbamates; Powders; Procaterol; Prostaglandin Antagonists; Prostaglandin D2; Quinolines; Receptors, Thromboxane A2, Prostaglandin H2; Serotonin; Substance P; Sulfides; Sulfonamides; Tosyl Compounds; Trachea; Tryptophan

2006