prostaglandin-d2 has been researched along with methyl-jasmonate* in 2 studies
2 other study(ies) available for prostaglandin-d2 and methyl-jasmonate
Article | Year |
---|---|
AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects.
Members of the aldo-keto reductase (AKR) superfamily, particularly the AKR1C subfamily, are emerging as important mediators of the pathology of cancer. Agents that inhibit these enzymes may provide novel agents for either the chemoprevention or treatment of diverse malignancies. Recently, jasmonates, a family of plant stress hormones that bear a structural resemblance to prostaglandins, have been shown to elicit anticancer activities both in vitro and in vivo. In this study, we show that jasmonic acid (JA) and methyl jasmonate (MeJ) are capable of inhibiting all four human AKR1C isoforms. Although JA is the more potent inhibitor of recombinant AKR1C proteins, including the in vitro prostaglandin F synthase activity of AKR1C3, MeJ displayed greater potency in cellular systems that was, at least in part, due to increased cellular uptake of MeJ. Moreover, using the acute myelogenous leukemia cell lines HL-60 and KG1a, we found that although both jasmonates were able to induce high levels of reactive oxygen species in a dose-dependent fashion, only MeJ was able to induce high levels of mitochondrial superoxide (MSO), possibly as an epiphenomenon of mitochondrial damage. There was a strong correlation observed between MSO formation at 24 hours and reduced cellularity at day 5. In conclusion, we have identified AKR1C isoforms as a novel target of jasmonates in cancer cells and provide further evidence of the promise of these compounds, or derivatives thereof, as adjunctive therapies in the treatment of cancer. Topics: 20-Hydroxysteroid Dehydrogenases; Acetates; Cell Survival; Cells, Cultured; Cyclopentanes; Drug Delivery Systems; Drug Evaluation, Preclinical; Enzyme Inhibitors; HL-60 Cells; Humans; Hydroxyprostaglandin Dehydrogenases; Isoenzymes; Leukemia, Myeloid; Mitochondria; Models, Biological; Oxylipins; Prostaglandin D2; Reactive Oxygen Species | 2009 |
New jasmonate analogues as potential anti-inflammatory agents.
In an effort to develop new anti-inflammatory agents, methyl jasmonate analogues (2-20) were synthesized and evaluated for their inhibitory effects on the production of pro-inflammatory mediators (NO, IL-6, and TNF-alpha) in lipopolysaccharide (LPS)-activated RAW264.7 murine macrophage cells. The introduction of an enone functionality to the structure of a plant hormone (1) rendered the product (2) a significant anti-inflammatory activity. Analogues further derived from 2 (7, 9, 13, and 15) exhibited even more enhanced activity, and these compounds were much more potent than natural anti-inflammatory prostaglandins (PGA(1), PGA(2), and 15-deoxy-Delta(12,14)-PGJ(2)). Among them, compounds 9 and 15 showed the highest potency, while compounds 7 and 13 would be more desirable with respect to safety. This is the first study demonstrating the anti-inflammatory potential of jasmonate derivatives, and the present results suggest that alpha-haloenone jasmonates (7, 9, 13, and 15) may serve as potential anti-inflammatory leads. Topics: Acetates; Animals; Anti-Inflammatory Agents; Cells, Cultured; Cyclopentanes; Interleukin-6; Lipopolysaccharides; Mice; Nitric Oxide; Oxylipins; Prostaglandin D2; Structure-Activity Relationship; Tumor Necrosis Factor-alpha | 2008 |