prostaglandin-d2 has been researched along with herbimycin* in 2 studies
2 other study(ies) available for prostaglandin-d2 and herbimycin
Article | Year |
---|---|
Tyrosine kinase inhibition is an important factor for gene expression of CRTH2 in human eosinophils and lymphocytes: A novel mechanism for explaining eosinophils recruitment by the neuro-immune axis in allergic rhinitis.
We recently shown a novel neuro-immune competition between vasoactive intestinal peptide (VIP) and PGD2 for CRTH2 receptor, and that genistein augmented VIP and PGD2-induced eosinophil chemotaxis. However, there are neither studies on the CRTH2 gene expression in allergic rhinitis (AR) nor in the effect of tyrosine kinase inhibitors in CRTH2 gene regulation. Our Objectives were to study the gene expression modulation of CRTH2 receptor in AR patients and the effect of tyrosine kinase inhibitors (TKIs) on CRTH2 gene modulation. Nasal provocation tests, ELISA, qRT-PCR, western blot, flow cytometry and chemotaxis assays in modified micro-Boyden chambers, were all used, to achieve our objectives. Herein we show that AR patients increased the amounts of VIP and PGD2 in their nasal secretions in the early phase reaction, however CRTH2 gene expression from leukocytes recovered in their nasal secretions was upregulated only during the late phase reaction. The TKIs; Genistein, Erbstatin and Herbimycin A, induced the gene expression of CRTH2 and increased the protein content of CRTH2 in both human lymphocytes and eosinophils. This was functional as PGD2/VIP-induced eosinophil chemotaxis was augmented by the TKIs and inhibited by pervanadate, the tyrosine phosphatase inhibitor. These results open channels for therapeutic modalities targeting CRTH2 molecules in AR. Topics: Adult; Antigens, Dermatophagoides; Cell Movement; Cells, Cultured; Eosinophils; Female; Gene Expression Regulation; Genistein; Humans; Hydroquinones; Lymphocytes; Male; Nasal Mucosa; Neuroimmunomodulation; Prostaglandin D2; Protein Kinase Inhibitors; Receptors, Immunologic; Receptors, Prostaglandin; Rhinitis, Allergic; Rifabutin; Vasoactive Intestinal Peptide | 2017 |
Induction of heat shock protein 70 by herbimycin A and cyclopentenone prostaglandins in smooth muscle cells.
This study characterizes Hsp70 induction in human smooth muscle cells (SMC) by herbimycin A and cyclopentenone prostaglandins. The magnitude of Hsp70 induction by cyclopentenone prostaglandins was 8- to 10-fold higher than induction by herbimycin A. Hsp70 induction by delta12PGJ2 was first observed at 10 microM, rose to 4000-5000 ng/mL within one log unit and a maximum response was not observed; concentrations of delta12PGJ2 higher than 30 microM were toxic to the cells. A maximum response with herbimycin A (500 ng/mL) was reached at 0.05 microM and maintained to 1 microM without toxicity. Both, delta12PGJ2 and herbimycin A, were inhibited by dithiothreitol (DTT, 100 microM) at lower concentrations and became less sensitive to inhibition at higher concentrations. Hsp70 induction after incubation of SMC with delta12PGJ2 followed by addition of herbimycin A was significantly higher than Hsp70 induction after incubation with herbimycin A followed by addition of delta12PGJ2. When cells were incubated with [3H]-PGJ2, followed by protein denaturation, substantial radioactivity remained protein-bound suggesting that the prostaglandin must be covalently bound. Covalent binding was largely insensitive to DTT. Maximal Hsp70 induction was observed after 5 minutes of exposure of the cells to herbimycin A followed by a 20 hour recovery period in agent-free medium. Cells required 3-4 hours of exposure to delta12PGJ2 followed by a 20 hour recovery period in order to see high Hsp70 induction. Binding of the heat shock factor (HSF) to the heat shock element (HSE) in the presence of herbimycin A or delta12PGJ2, and the effects of DTT, mirrored the results of Hsp70 induction. The results suggest that probable differences between the 2 agents are at the level of the signal transduction prior to HSF activation. Topics: Anti-Bacterial Agents; Antiviral Agents; Benzoquinones; Blotting, Western; Cells, Cultured; Dithiothreitol; DNA-Binding Proteins; Enzyme-Linked Immunosorbent Assay; Heat Shock Transcription Factors; HSP70 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Muscle, Smooth; Prostaglandin D2; Protein Binding; Quinones; Rifabutin; Transcription Factors | 2000 |