prostaglandin-d2 has been researched along with cyclopentanone* in 2 studies
2 other study(ies) available for prostaglandin-d2 and cyclopentanone
Article | Year |
---|---|
15-deoxy-delta 12,14-prostaglandin J2 induces heme oxygenase-1 gene expression in a reactive oxygen species-dependent manner in human lymphocytes.
15-Deoxy-delta(12,14)-prostaglandin J(2) (15dPGJ(2) has been recently proposed as a potent anti-inflammatory agent. However, the mechanisms by which 15dPGJ(2) mediates its therapeutic effects in vivo are unclear. We demonstrate that 15dPGJ(2) at micromolar (2.5-10 microm) concentrations induces the expression of heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, at both mRNA and protein levels in human lymphocytes. In contrast, troglitazone and ciglitazone, two thiazolidinediones that mimic several effects of 15dPGJ(2) through their binding to the peroxisome proliferator-activated receptor (PPAR)-gamma, did not affect HO-1 expression, and the positive effect of 15dPGJ(2) on this process was mimicked instead by other cyclopentenone prostaglandins (PG), such as PGD(2) (the precursor of 15dPGJ(2)) and PGA(1) and PGA(2) which do not interact with PPAR-gamma. Also, 15dPGJ(2) enhanced the intracellular production of reactive oxygen species (ROS) and increased xanthine oxidase activity in vitro. Inhibition of intracellular ROS production by N-acetylcysteine, TEMPO, Me(2)SO, 1,10-phenanthroline, or allopurinol resulted in a decreased 15dPGJ(2)-dependent HO-1 expression in the cells. Furthermore, buthionine sulfoximine, an inhibitor of reduced glutathione synthesis, or Fe(2+)/Cu(2+) ions enhanced the positive effect of 15dPGJ(2) on HO-1 expression. On the other hand, the inhibition of phosphatidylinositol 3-kinase or p38 mitogen-activated protein kinase, or the blockade of transcription factor NF-kappaB activation, hindered 15dPGJ(2)-elicited HO-1 expression. Collectively, the present data suggest that 15dPGJ(2) anti-inflammatory actions at pharmacological concentrations involve the induction of HO-1 gene expression through mechanisms independent of PPAR-gamma activation and dependent on ROS produced via the xanthine/xanthine oxidase system and/or through Fenton reactions. Both phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways also appear implicated in modulation of HO-1 expression by 15dPGJ(2). Topics: Acetylcysteine; Allopurinol; Blotting, Western; Buthionine Sulfoximine; Cells, Cultured; Chromans; Cyclic N-Oxides; Cyclopentanes; Dose-Response Relationship, Drug; Gene Expression Regulation, Enzymologic; Glutathione; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Humans; Ions; Lymphocytes; Membrane Proteins; Mitogen-Activated Protein Kinases; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phenanthrolines; Phosphatidylinositol 3-Kinases; Prostaglandin D2; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Temperature; Thiazolidinediones; Time Factors; Transcription Factors; Troglitazone; Xanthine Oxidase | 2004 |
Human colorectal cancer cells efficiently conjugate the cyclopentenone prostaglandin, prostaglandin J(2), to glutathione.
Cyclopentenone prostaglandins (PGs), particularly those of the J-series, affect proliferation and differentiation in a number of cell lines. J-ring PGs have been shown to be ligands for the peroxisome proliferator-activated receptor (PPAR)-gamma and to modulate NF-kappaB-mediated gene transcription. We have previously reported that large quantities of eicosanoids, including PGJ(2), are produced by the human colorectal cancer cell line HCA-7 while lesser amounts of Delta(12)-PGJ(2) and 15-deoxy-Delta(12,14)-PGJ(2) are formed. In this and other cell lines, cyclopentenone PGs have been shown to increase cell proliferation, but factors that influence their formation and metabolism are poorly understood. Unlike other PGs, cyclopentenone PGs contain alpha,beta-unsaturated carbonyl groups that readily adduct various biomolecules such as glutathione (GSH) in vitro. We now report that in HCA-7 cells, PGJ(2) is largely metabolized by conjugation to GSH. Characterization of the adducts by liquid chromatography (LC)-mass spectrometry (MS) revealed two major metabolites consisting of (1) a novel GSH conjugate in which the carbonyl at C-11 of PGJ(2) is reduced and (2) intact PGJ(2) conjugated to GSH. Approximately 70% of the PGJ(2) added to HCA-7 cells was esterifed to GSH after 2 h of incubation, suggesting this pathway represents the major route of metabolic disposition of PGJ(2) in HCA-7 cells. Topics: Antineoplastic Agents; Chromatography, Liquid; Colorectal Neoplasms; Cyclopentanes; Glutathione; Humans; Mass Spectrometry; Prostaglandin D2; Time Factors; Tumor Cells, Cultured | 2002 |