prostaglandin-d2 and ceric-oxide

prostaglandin-d2 has been researched along with ceric-oxide* in 1 studies

Other Studies

1 other study(ies) available for prostaglandin-d2 and ceric-oxide

ArticleYear
Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation.
    Nanotoxicology, 2011, Volume: 5, Issue:4

    Cerium oxide (CeO₂) represents an important nanomaterial with wide ranging applications. However, little is known regarding how CeO₂ exposure may influence pulmonary or systemic inflammation. Furthermore, how mast cells would influence inflammatory responses to a nanoparticle exposure is unknown. We thus compared pulmonary and cardiovascular responses between C57BL/6 and B6.Cg-Kit(W-sh) mast cell deficient mice following CeO₂ nanoparticle instillation. C57BL/6 mice instilled with CeO₂ exhibited mild pulmonary inflammation. However, B6.Cg-Kit(W-sh) mice did not display a similar degree of inflammation following CeO₂ instillation. Moreover, C57BL/6 mice instilled with CeO₂ exhibited altered aortic vascular responses to adenosine and an increase in myocardial ischemia/reperfusion injury which was absent in B6.Cg-Kit(W-sh) mice. In vitro CeO₂ exposure resulted in increased production of PGD₂, TNF-α, IL-6 and osteopontin by cultured mast cells. These findings demonstrate that CeO₂ nanoparticles activate mast cells contributing to pulmonary inflammation, impairment of vascular relaxation and exacerbation of myocardial ischemia/reperfusion injury.

    Topics: Adenosine; Analysis of Variance; Animals; Aorta, Thoracic; Bronchoalveolar Lavage Fluid; Cerium; Chemokine CCL3; Gene Expression Regulation; Histocytochemistry; Interleukin-10; Interleukin-13; Interleukin-6; Lung; Male; Mast Cells; Metal Nanoparticles; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Osteopontin; Particle Size; Pneumonia; Prostaglandin D2; Reperfusion Injury; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha

2011