prostaglandin-b2 and 5-hydroxy-6-8-11-14-eicosatetraenoic-acid

prostaglandin-b2 has been researched along with 5-hydroxy-6-8-11-14-eicosatetraenoic-acid* in 2 studies

Other Studies

2 other study(ies) available for prostaglandin-b2 and 5-hydroxy-6-8-11-14-eicosatetraenoic-acid

ArticleYear
LTB4 as marker of 5-LO inhibitory activity of two new N-omega-ethoxycarbonyl-4-quinolones.
    Journal of pharmaceutical and biomedical analysis, 1999, Volume: 19, Issue:3-4

    The supposed 5-LO inhibitory activity of two N-omega-ethoxycarbonyl-4-quinolones was tested determining leukotriene B4 (LTB4) in RBL-1 cell cultures, pretreated with the two compounds of interest. LTB4, obtained by solid-phase extraction (SPE) from cell cultures supernatants, was determined by micellar electrokinetic chromatography (MEKC). The analysis was performed using an uncoated capillary, filled with borate buffer at pH 8.3, containing 12.5 mM SDS as micelles generator. Therefore, following the decreasing of LTB4 it was possible to verify the 5-LO inhibitory activity of two quinolone derivatives. To asses the suitability of the use of LTB4 as marker of the activity of the new compounds, the analysis was repeated using quercetin, a well known 5-LO inhibitor.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonate 5-Lipoxygenase; Biomarkers; Calcimycin; Chromatography, High Pressure Liquid; Chromatography, Micellar Electrokinetic Capillary; Culture Media, Conditioned; Electrophoresis, Capillary; Enzyme Activation; Evaluation Studies as Topic; Hydroxyeicosatetraenoic Acids; Leukemia, Basophilic, Acute; Leukotriene B4; Lipoxygenase Inhibitors; Prostaglandins B; Quercetin; Quinolones; Rats; Sodium Dodecyl Sulfate; Tumor Cells, Cultured

1999
Phorbol myristate acetate stimulates the formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human neutrophils by activating NADPH oxidase.
    The Journal of biological chemistry, 1994, Oct-14, Volume: 269, Issue:41

    We have shown previously that human neutrophil microsomes contain a highly specific dehydrogenase which, in the presence of NADP+, converts 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) to its 5-oxo metabolite, 5-oxo-ETE, a potent agonist of these cells. However, intact neutrophils convert 5S-HETE principally to its omega-oxidation product, 5,20-diHETE, and to only small amounts of 5-oxo-ETE. Phorbol myristate acetate (PMA) dramatically shifts the metabolism of 5S-HETE by intact cells so that 5-oxo-ETE is the major metabolite. The objective of this investigation was to determine the mechanism for the stimulatory effect of PMA on 5-oxo-ETE formation. The possibility that oxidants released in response to PMA nonenzymatically oxidized 5S-HETE was ruled out, since PMA did not appreciably stimulate the formation of 5-oxo-ETE from 5R-HETE. On the other hand, inhibition of NADPH oxidase either by diphenylene iodonium or by mild heating nearly completely prevented the stimulatory effect of PMA on the formation of 5-oxo-ETE. The possibility that this effect was mediated by superoxide seems unlikely, since it was still observed, although somewhat attenuated, in the presence of superoxide dismutase. Moreover, superoxide generated by another mechanism (xanthine/xanthine oxidase) did not appreciably affect the formation of 5-oxo-ETE by neutrophils. However, phenazine methosulfate, which can nonenzymatically convert NADPH to NADP+, mimicked the effect of PMA on 5-oxo-ETE formation by intact neutrophils. It is concluded that PMA acts by activating NADPH oxidase, resulting in conversion of NADPH to NADP+, which enhances the formation of 5-oxo-ETE and reduces the formation of 5,20-diHETE. Serum-treated zymosan has an effect on the metabolism of 5S-HETE similar to that of PMA in that it also stimulates the formation of 5-oxo-ETE and inhibits that of 5,20-diHETE.

    Topics: Arachidonic Acids; Azides; Dose-Response Relationship, Drug; Enzyme Activation; Humans; Hydroxyeicosatetraenoic Acids; Methionine; Microsomes; Models, Biological; NADH, NADPH Oxidoreductases; NADP; NADPH Oxidases; Neutrophils; Oxidation-Reduction; Prostaglandins B; Superoxides; Tetradecanoylphorbol Acetate; Zymosan

1994