propranolol has been researched along with mibefradil in 17 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (17.65) | 18.2507 |
2000's | 4 (23.53) | 29.6817 |
2010's | 10 (58.82) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Coassolo, P; Lavé, T; Schneider, G | 1 |
Topliss, JG; Yoshida, F | 1 |
Bacsó, Z; Cianfriglia, M; Fenyvesi, F; Goda, K; Kappelmayer, J; Lustyik, G; Nagy, H; Szabó, G; Szilasi, M | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Bellera, CL; Bruno-Blanch, LE; Castro, EA; Duchowicz, PR; Goodarzi, M; Ortiz, EV; Pesce, G; Talevi, A | 1 |
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Barber, S; Dew, TP; Farrell, TL; Poquet, L; Williamson, G | 1 |
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B | 1 |
Chen, L; Fei, J; Mei, Y; Ren, S; Yan, SF; Zeng, J; Zhang, JZ | 1 |
Alpert, JS | 1 |
Balfagón, G; Encabo, A; Ferrer, M; Manso, AM; Marín, J; Salaices, M | 1 |
1 trial(s) available for propranolol and mibefradil
Article | Year |
---|---|
Treatment of chronic angina pectoris with combination mibefradil and beta-blocker therapy.
Topics: Adrenergic beta-Antagonists; Angina Pectoris; Atenolol; Benzimidazoles; Calcium Channel Blockers; Chronic Disease; Dose-Response Relationship, Drug; Double-Blind Method; Drug Therapy, Combination; Electrocardiography; Exercise Tolerance; Humans; Mibefradil; Propranolol; Safety; Tetrahydronaphthalenes; Treatment Outcome | 1998 |
16 other study(ies) available for propranolol and mibefradil
Article | Year |
---|---|
Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques.
Topics: Animals; Biological Availability; Dogs; Humans; Least-Squares Analysis; Liver; Multivariate Analysis; Neural Networks, Computer; Pharmacokinetics; Rats | 1999 |
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies.
Topics: Adenosine Triphosphatases; Animals; Anti-Bacterial Agents; Antibodies, Monoclonal; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Binding, Competitive; Calcium Channel Blockers; Cyclosporine; Detergents; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Flow Cytometry; Fluoresceins; Humans; Ivermectin; Mice; NIH 3T3 Cells; Substrate Specificity | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Prediction of drug intestinal absorption by new linear and non-linear QSPR.
Topics: Humans; Intestinal Absorption; Linear Models; Molecular Conformation; Nonlinear Dynamics; Permeability; Pharmaceutical Preparations; Probability; Quantitative Structure-Activity Relationship; Thermodynamics | 2011 |
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection | 2011 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Cinnamates; Enterocytes; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Kinetics; Models, Biological; Molecular Conformation; Osmolar Concentration; Phenols | 2012 |
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers | 2012 |
Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.
Topics: Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Discovery; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Kinetics; Microsomes, Liver; Models, Molecular; Molecular Dynamics Simulation; Substrate Specificity | 2013 |
Changes of cardiac calcium homeostasis in spontaneously hypertensive rats.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels; Electric Stimulation; Heart Ventricles; Homeostasis; Hypertension; In Vitro Techniques; Isoproterenol; Male; Mibefradil; Myocardial Contraction; Myocardium; Propranolol; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Ryanodine | 1999 |