Page last updated: 2024-08-16

propranolol and carisoprodol

propranolol has been researched along with carisoprodol in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (50.00)29.6817
2010's3 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bergström, F; Giordanetto, F; Rehngren, M; Tunek, A; Wan, H1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
Ahman, M; Holmén, AG; Wan, H1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Boriss, H; Braggio, S; Corbioli, S; Fontana, S; Helmdach, L; Longhi, R; Schiller, J; Vinco, F1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for propranolol and carisoprodol

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

5 other study(ies) available for propranolol and carisoprodol

ArticleYear
High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery.
    Journal of medicinal chemistry, 2007, Sep-20, Volume: 50, Issue:19

    Topics: Animals; Brain; Central Nervous System Agents; Dialysis; Hydrophobic and Hydrophilic Interactions; In Vitro Techniques; Mice; Models, Statistical; Protein Binding; Quantitative Structure-Activity Relationship; Rats

2007
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
    Journal of medicinal chemistry, 2009, Mar-26, Volume: 52, Issue:6

    Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) as a novel high-throughput method.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Absorption; Albumins; Animals; Brain; Brain Chemistry; Cell Membrane; Chromatography, High Pressure Liquid; Drug Evaluation, Preclinical; In Vitro Techniques; Lipids; Male; Microdialysis; Pharmaceutical Preparations; Protein Binding; Rats; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Swine; Tissue Distribution

2011