propranolol has been researched along with benzonidazole in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 5 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Bloomer, WD; Chatelain, E; Ioset, JR; Kaiser, M; O'Shea, IP; Papadopoulou, MV; Rosenzweig, HS; Wilkinson, SR | 1 |
Bloomer, WD; Kaiser, M; O'Shea, IP; Papadopoulou, MV; Rosenzweig, HS; Wilkinson, SR | 1 |
Buckner, FS; Gelb, MH; Gillespie, JR; Herbst, ZM; Montanari, CA; Nguyen, UTT; Ranade, RM; Silva, DG | 1 |
5 other study(ies) available for propranolol and benzonidazole
Article | Year |
---|---|
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation.
Topics: Animals; Binding Sites; Cell Line; Chagas Disease; Disease Models, Animal; Leishmania donovani; Mice; Mice, Inbred BALB C; Nitroreductases; Parasitic Sensitivity Tests; Prodrugs; Protein Structure, Tertiary; Protozoan Proteins; Rats; Sterol 14-Demethylase; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2015 |
3-Nitrotriazole-based piperazides as potent antitrypanosomal agents.
Topics: Animals; Cell Line; Chagas Disease; Dose-Response Relationship, Drug; Humans; Leishmania donovani; Mice; Mice, Inbred BALB C; Molecular Structure; Parasitic Sensitivity Tests; Piperazines; Rats; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2015 |
New Class of Antitrypanosomal Agents Based on Imidazopyridines.
Topics: | 2017 |