Page last updated: 2024-08-16

propafenone and phenytoin

propafenone has been researched along with phenytoin in 13 studies

Research

Studies (13)

TimeframeStudies, this research(%)All Research%
pre-19903 (23.08)18.7374
1990's0 (0.00)18.2507
2000's6 (46.15)29.6817
2010's4 (30.77)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Du, LP; Li, MY; Tsai, KC; Xia, L; You, QD1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W1
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Somberg, J1
Roden, DM; Siddoway, LA; Woosley, RL1
Huang, SK; Marcus, FI1
Banach, M; Borowicz-Reutt, KK; Piskorska, B1

Reviews

4 review(s) available for propafenone and phenytoin

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Antiarrhythmic drug therapy. Recent advances and current status.
    Cardiology, 1985, Volume: 72, Issue:5-6

    Topics: Adrenergic beta-Antagonists; Ajmaline; Amiodarone; Anilides; Anti-Arrhythmia Agents; Aprindine; Arrhythmias, Cardiac; Benzeneacetamides; Bepridil; Bethanidine; Bretylium Tosylate; Disopyramide; Drug Administration Schedule; Encainide; Flecainide; Heart Conduction System; Humans; Imidazoles; Lidocaine; Mexiletine; Moricizine; Myocardial Contraction; Phenothiazines; Phenytoin; Piperidines; Procainamide; Propafenone; Propiophenones; Pyrrolidines; Quinidine; Tocainide; Verapamil

1985
Clinical pharmacology of old and new antiarrhythmic drugs.
    Cardiovascular clinics, 1985, Volume: 15, Issue:3

    Topics: Adrenergic beta-Antagonists; Amiodarone; Anilides; Anti-Arrhythmia Agents; Benzeneacetamides; Biological Availability; Bretylium Compounds; Disopyramide; Encainide; Flecainide; Humans; Imipramine; Lidocaine; Mexiletine; Moricizine; Phenothiazines; Phenytoin; Piperidines; Procainamide; Propafenone; Propiophenones; Quinidine; Tocainide

1985
Antiarrhythmic drug therapy of ventricular arrhythmias.
    Current problems in cardiology, 1986, Volume: 11, Issue:4

    Topics: Amiodarone; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Bretylium Tosylate; Disopyramide; Flecainide; Heart Ventricles; Humans; Lidocaine; Mexiletine; Moricizine; Phenothiazines; Phenytoin; Piperidines; Procainamide; Propafenone; Propiophenones; Quinidine; Sotalol; Tocainide; Verapamil

1986

Other Studies

9 other study(ies) available for propafenone and phenytoin

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
The pharmacophore hypotheses of I(Kr) potassium channel blockers: novel class III antiarrhythmic agents.
    Bioorganic & medicinal chemistry letters, 2004, Sep-20, Volume: 14, Issue:18

    Topics: Anti-Arrhythmia Agents; Models, Biological; Models, Molecular; Potassium Channel Blockers; Potassium Channels; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2004
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
    Journal of medicinal chemistry, 2008, Jun-12, Volume: 51, Issue:11

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship

2008
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:11

    Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution

2009
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
    Cardiovascular research, 2011, Jul-01, Volume: 91, Issue:1

    Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection

2011
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012
Propafenone enhances the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model.
    Pharmacological reports : PR, 2016, Volume: 68, Issue:3

    Topics: Animals; Anticonvulsants; Avoidance Learning; Brain; Carbamazepine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Electroshock; Male; Mice; Phenobarbital; Phenytoin; Propafenone; Valproic Acid

2016