propafenone has been researched along with phenobarbital in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (10.00) | 18.2507 |
2000's | 6 (60.00) | 29.6817 |
2010's | 3 (30.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Du, LP; Li, MY; Tsai, KC; Xia, L; You, QD | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Mizuochi, M; Morita, K; Yamaji, A; Yokoyama, T | 1 |
Alder, J; Bjerrum, OJ; Brian Houston, J; Garner, C; Gesson, C; Grynkiewicz, G; Jochemsen, R; Lappin, G; Oosterhuis, B; Rowland, M; Shishikura, Y; Weaver, RJ | 1 |
Banach, M; Borowicz-Reutt, KK; Piskorska, B | 1 |
1 review(s) available for propafenone and phenobarbital
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
9 other study(ies) available for propafenone and phenobarbital
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
The pharmacophore hypotheses of I(Kr) potassium channel blockers: novel class III antiarrhythmic agents.
Topics: Anti-Arrhythmia Agents; Models, Biological; Models, Molecular; Potassium Channel Blockers; Potassium Channels; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship | 2008 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution | 2009 |
Stereoselectivity in the hydroxylation of propafenone enantiomers in mouse hepatic microsomes.
Topics: Animals; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Hydroxylation; Kinetics; Male; Mice; Microsomes, Liver; Oxidation-Reduction; Phenobarbital; Propafenone; Stereoisomerism | 1994 |
Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers.
Topics: Acetaminophen; Administration, Oral; Adolescent; Adult; Area Under Curve; Carbon Radioisotopes; Chromatography, High Pressure Liquid; Clarithromycin; Cross-Over Studies; Dose-Response Relationship, Drug; Humans; Injections, Intravenous; Male; Mass Spectrometry; Middle Aged; Phenobarbital; Propafenone; Sumatriptan | 2011 |
Propafenone enhances the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model.
Topics: Animals; Anticonvulsants; Avoidance Learning; Brain; Carbamazepine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Electroshock; Male; Mice; Phenobarbital; Phenytoin; Propafenone; Valproic Acid | 2016 |