Page last updated: 2024-08-16

propafenone and emetine

propafenone has been researched along with emetine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (50.00)29.6817
2010's2 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Johans, C; Kinnunen, PK; Söderlund, T; Suomalainen, P1
Adrián, F; Anderson, P; Brinker, A; Caldwell, JS; Chatterjee, A; Gray, NS; Henson, K; Janes, J; Kato, N; Kuhen, K; Matzen, JT; McNamara, C; Nagle, A; Nam, TG; Plouffe, D; Schultz, PG; Trager, R; Winzeler, EA; Yan, SF; Zhou, Y1
Barnes, SW; Bonamy, GM; Bopp, SE; Borboa, R; Bright, AT; Chatterjee, A; Che, J; Cohen, S; Dharia, NV; Diagana, TT; Fidock, DA; Froissard, P; Gagaring, K; Gettayacamin, M; Glynne, RJ; Gordon, P; Groessl, T; Kato, N; Kuhen, KL; Lee, MC; Mazier, D; McNamara, CW; Meister, S; Nagle, A; Nam, TG; Plouffe, DM; Richmond, W; Roland, J; Rottmann, M; Sattabongkot, J; Schultz, PG; Tuntland, T; Walker, JR; Winzeler, EA; Wu, T; Zhou, B; Zhou, Y1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1

Other Studies

4 other study(ies) available for propafenone and emetine

ArticleYear
Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability.
    Journal of medicinal chemistry, 2004, Mar-25, Volume: 47, Issue:7

    Topics: Blood-Brain Barrier; Lipid Bilayers; Micelles; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship; Surface Properties

2004
In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen.
    Proceedings of the National Academy of Sciences of the United States of America, 2008, Jul-01, Volume: 105, Issue:26

    Topics: Animals; Antimalarials; Cluster Analysis; Computational Biology; Drug Evaluation, Preclinical; Drug Resistance; Folic Acid Antagonists; Malaria; Models, Molecular; Parasites; Plasmodium falciparum; Reproducibility of Results; Structure-Activity Relationship; Tetrahydrofolate Dehydrogenase

2008
Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery.
    Science (New York, N.Y.), 2011, Dec-09, Volume: 334, Issue:6061

    Topics: Animals; Antimalarials; Cell Line, Tumor; Drug Discovery; Drug Evaluation, Preclinical; Drug Resistance; Erythrocytes; Humans; Imidazoles; Liver; Malaria; Mice; Mice, Inbred BALB C; Molecular Structure; Piperazines; Plasmodium; Plasmodium berghei; Plasmodium falciparum; Plasmodium yoelii; Polymorphism, Single Nucleotide; Protozoan Proteins; Random Allocation; Small Molecule Libraries; Sporozoites

2011
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013