Page last updated: 2024-08-16

promazine and tacrine

promazine has been researched along with tacrine in 18 studies

Research

Studies (18)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (22.22)29.6817
2010's14 (77.78)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gao, F; Lombardo, F; Obach, RS; Shalaeva, MY1
Lombardo, F; Obach, RS; Waters, NJ1
Andrisano, V; Barril, X; Bartolini, M; Carreiras, Mdo C; de los Ríos, C; García, AG; Huertas, O; León, R; López, B; López, MG; Luque, FJ; Marco-Contelles, J; Rodríguez-Franco, MI; Samadi, A; Villarroya, M1
Arce, MP; Conde, S; García, AG; González-Muñoz, GC; López, B; López, MG; Pérez, C; Rodríguez-Franco, MI; Villarroya, M1
Ang, KK; Arkin, MR; Chen, S; Doyle, PS; Engel, JC; McKerrow, JH1
Glen, RC; Lowe, R; Mitchell, JB1
Arce, MP; Conde, S; del Barrio, L; Egea, J; García, AG; González-Muñoz, GC; León, R; López, B; López, MG; Martín-de-Saavedra, MD; Pérez, C; Rodríguez-Franco, MI; Romero, A; Villarroya, M1
Chen, ZF; Huang, SL; Huang, ZS; Liang, H; Qin, JK; Tang, H; Zhao, HT; Zhao, LZ; Zhong, SM1
Chen, ZF; Liang, H; Tang, H; Wang, ZY; Zhao, HT; Zhong, SM1
Chen, J; Chen, X; Huang, L; Li, X; Sun, Y1
Bellman, K; Knegtel, RM; Settimo, L1
Andrisano, V; Bartolini, M; Clos, MV; Di Pietro, O; Juárez-Jiménez, J; Lavilla, R; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Ramón, R; Viayna, E; Vicente-García, E1
Huang, L; Li, X; Meng, F; Miao, H; Sun, Y1
Jiang, N; Kong, LY; Lan, JS; Li, ZR; Wang, KD; Wang, X; Xie, SS; Yu, W1
Chen, W; Huangli, Y; Qin, J; Shen, Y; Tang, H; Wang, L; Wei, S1
Guo, QL; Huang, SL; Huang, ZS; Li, D; Liu, ZQ; Ou, TM; Tan, JH; Wang, HG; Wang, N; Wu, JQ; Xia, CL1
Dolezal, R; Hepnarova, V; Hrabinova, M; Jost, P; Jun, D; Kaping, D; Kerhartova, M; Korabecny, J; Kuca, K; Kucera, T; Matouskova, L; Mezeiova, E; Muckova, L; Nepovimova, E; Pham, NL; Soukup, O; Spilovska, K; Staud, F; Vykoukalova, N1
Alcaro, S; Bagetta, D; Borges, F; Cagide, F; Oliveira, PJ; Ortuso, F; Pérez, C; Reis, J; Rodríguez-Franco, MI; Teixeira, J; Uriarte, E; Valencia, ME1

Other Studies

18 other study(ies) available for promazine and tacrine

ArticleYear
Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics.
    Journal of medicinal chemistry, 2004, Feb-26, Volume: 47, Issue:5

    Topics: Algorithms; Blood Proteins; Half-Life; Humans; Hydrogen-Ion Concentration; Models, Biological; Pharmaceutical Preparations; Pharmacokinetics; Protein Binding; Statistics as Topic; Tissue Distribution

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease.
    Journal of medicinal chemistry, 2009, May-14, Volume: 52, Issue:9

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Blood-Brain Barrier; Butyrylcholinesterase; Calcium; Calcium Channel Blockers; Catalytic Domain; Cell Death; Cell Line, Tumor; Cholinesterase Inhibitors; Cytosol; Dihydropyridines; Humans; Hydrogen Peroxide; Kinetics; Ligands; Models, Molecular; Peptide Fragments; Permeability; Tacrine

2009
Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer's disease.
    Journal of medicinal chemistry, 2009, Nov-26, Volume: 52, Issue:22

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Catalytic Domain; Cattle; Cell Death; Cell Line, Tumor; Cell Survival; Cholinergic Agents; Cholinesterase Inhibitors; Esters; Glutamic Acid; Humans; Hydrophobic and Hydrophilic Interactions; Neuroprotective Agents; Permeability; Piperidines; Protein Binding

2009
Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:8

    Topics: Animals; Cattle; Cell Line; Cell Line, Tumor; Chagas Disease; Drug Evaluation, Preclinical; Hepatocytes; High-Throughput Screening Assays; Humans; Image Processing, Computer-Assisted; Muscle, Skeletal; Parasitic Sensitivity Tests; Trypanocidal Agents; Trypanosoma cruzi

2010
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
N-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer's disease.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:6

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Antineoplastic Agents; Butyrylcholinesterase; Calcium; Cell Death; Cell Survival; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Okadaic Acid; Peptide Fragments; Phenothiazines; Stereoisomerism; Structure-Activity Relationship; Tumor Cells, Cultured

2011
Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:10

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Animals; Aporphines; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Electrophorus; Horses; Humans; Models, Biological; Tacrine

2011
Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.
    Bioorganic & medicinal chemistry letters, 2012, Mar-15, Volume: 22, Issue:6

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Aporphines; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Humans; Membranes, Artificial; Models, Molecular; Molecular Structure; Permeability; Protein Binding

2012
Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids.
    Bioorganic & medicinal chemistry, 2013, Dec-01, Volume: 21, Issue:23

    Topics: Alzheimer Disease; Animals; Blood-Brain Barrier; Cholinesterase Inhibitors; Cholinesterases; Electrophorus; Humans; Isoflavones; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Swine; Tacrine

2013
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014
1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
    European journal of medicinal chemistry, 2014, Feb-12, Volume: 73

    Topics: Acetylcholinesterase; Animals; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Membranes, Artificial; Models, Biological; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Structure; Naphthyridines; Permeability; Protein Binding

2014
Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer's disease.
    European journal of medicinal chemistry, 2014, Nov-24, Volume: 87

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Humans; Indans; Inhibitory Concentration 50; Ligands; Peptide Fragments; Permeability; Protein Aggregates

2014
Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.
    European journal of medicinal chemistry, 2015, May-05, Volume: 95

    Topics: Acetylcholinesterase; Alzheimer Disease; Benzopyrans; Blood-Brain Barrier; Brain; Cell Survival; Cells, Cultured; Cholinesterase Inhibitors; Coumarins; Drug Design; Erythrocytes; Humans; Kinetics; Models, Molecular; Molecular Docking Simulation; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neuroblastoma; Piperazines; Tacrine

2015
Multitarget-directed oxoisoaporphine derivatives: Anti-acetylcholinesterase, anti-β-amyloid aggregation and enhanced autophagy activity against Alzheimer's disease.
    Bioorganic & medicinal chemistry, 2016, 11-15, Volume: 24, Issue:22

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Aporphines; Autophagy; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Protein Aggregates; Structure-Activity Relationship; Tumor Cells, Cultured

2016
Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment.
    European journal of medicinal chemistry, 2017, Apr-21, Volume: 130

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Cell Death; Cell Line; Cholinesterase Inhibitors; Drug Design; Glutathione; Humans; Quinolines; Reactive Oxygen Species

2017
The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer's disease.
    European journal of medicinal chemistry, 2018, Apr-25, Volume: 150

    Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Butyrylcholinesterase; Cell Line; Cholinesterase Inhibitors; Cricetulus; Dose-Response Relationship, Drug; Humans; Molecular Structure; Quinolines; Structure-Activity Relationship; Tacrine

2018
Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors.
    European journal of medicinal chemistry, 2018, Oct-05, Volume: 158

    Topics: Alzheimer Disease; Blood-Brain Barrier; Cholinesterase Inhibitors; Cholinesterases; Chromones; Drug Design; Hep G2 Cells; Humans; Ligands; Molecular Docking Simulation; Molecular Targeted Therapy; Monoamine Oxidase; Monoamine Oxidase Inhibitors

2018