procyanidin-b1 and hyperoside

procyanidin-b1 has been researched along with hyperoside* in 3 studies

Other Studies

3 other study(ies) available for procyanidin-b1 and hyperoside

ArticleYear
The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars.
    Molecules (Basel, Switzerland), 2020, Nov-11, Volume: 25, Issue:22

    As the interest in heirloom cultivars of apple trees, their fruit, and processed products is growing worldwide, studies of the qualitative and quantitative composition of biological compounds are important for the evaluation of the quality and nutritional properties of the apples. Studies on the variations in the chemical composition of phenolic compounds characterized by a versatile biological effect are important when researching the genetic heritage of the heirloom cultivars in order to increase the cultivation of such cultivars in orchards. A variation in the qualitative and quantitative composition of phenolic compounds was found in apple samples of cultivars included in the Lithuanian collection of genetic resources. By the high-performance liquid chromatography (HPLC) method flavan-3-ols (procyanidin B1, procyanidin B2, procyanidin C2, (+)-catechin and (-)-epicatechin), flavonols (rutin, hyperoside, quercitrin, isoquercitrin, reynoutrin and avicularin), chlorogenic acids and phloridzin were identified and quantified in fruit samples of heirloom apple cultivars grown in Lithuania. The highest sum of the identified phenolic compounds (3.82 ± 0.53 mg/g) was found in apple fruit samples of the 'Koštelė' cultivar.

    Topics: Biflavonoids; Catechin; Chlorogenic Acid; Chromatography, High Pressure Liquid; Dietary Supplements; Flavonoids; Fruit; Glycosides; Lithuania; Malus; Phenols; Phlorhizin; Proanthocyanidins; Quercetin; Rutin

2020
Polyphenolic profile in cider and antioxidant power.
    Journal of the science of food and agriculture, 2015, Volume: 95, Issue:14

    The aim of this work was to find the effect of polyphenolic compounds in Basque ciders on the following parameters: antioxidant activity, browning, protein-precipitating capacity, turbidity and reduction potential. These five parameters are highly important, as they affect the taste, the visual aspect and the preservation of cider, and are mainly related to polyphenolic compounds.. Procyanidin B1 and procyanidin B2 showed a significant positive effect on antioxidant activity. p-Coumaric acid, (-)-epicatechin and hyperin had a significant positive effect on protein-precipitating capacity. Tyrosol had a significant negative effect on reduction potential.. Procyanidin B1 and procyanidin B2 are the most powerful antioxidants in Basque cider, while p-coumaric acid, (-)-epicatechin and hyperin are those with greatest capacity to precipitate proteins. Ciders with higher tyrosol concentration will have less reduction potential and higher antioxidant reservoir.

    Topics: Animals; Antioxidants; Biflavonoids; Catechin; Coumaric Acids; Fermentation; Fruit; Fruit and Vegetable Juices; Humans; Malus; Phenylethyl Alcohol; Plant Extracts; Polyphenols; Proanthocyanidins; Propionates; Quercetin; Spain

2015
Protective effect of phenolic compounds isolated from the hooks and stems of Uncaria sinensis on glutamate-induced neuronal death.
    The American journal of Chinese medicine, 2001, Volume: 29, Issue:1

    We isolated the phenolic compounds epicatechin, catechin, procyanidin B-1, procyanidin B-2, hyperin and caffeic acid from the hooks and stems of Uncaria sinensis (HSUS), and studied their protective effects against glutamate-induced neuronal death in cultured rat cerebellar granule cells. Cell viability evaluated by MTT assay was significantly increased by application of epicatechin (100-300 microM), catechin (300 microM), procyanidin B-1 (30-300 microM) and procyanidin B-2 (100-300 microM) compared with exposure to glutamate only. 45Ca2+ influx into cells induced by glutamate was also significantly inhibited by administration ofepicatechin (300 microM), catechin (300 microM), procyanidin B-1 (100-300 microM) and procyanidin B-2 (100-300 microM). These results suggest that epicatechin, catechin, procyanidin B-1 and procyanidin B-2 are the active components of HSUS that protect against glutamate-induced neuronal death in cultured cerebellar granule cells by inhibition of Ca2+ influx.

    Topics: Animals; Biflavonoids; Caffeic Acids; Calcium; Catechin; Cell Survival; Cells, Cultured; Cerebellum; Dose-Response Relationship, Drug; Glutamic Acid; Molecular Structure; Neurons; Phenols; Plant Extracts; Plant Stems; Plants, Medicinal; Proanthocyanidins; Quercetin; Rats; Rats, Wistar; Rubiaceae

2001