pridopidine and 4-phenylpiperidine

pridopidine has been researched along with 4-phenylpiperidine* in 2 studies

Other Studies

2 other study(ies) available for pridopidine and 4-phenylpiperidine

ArticleYear
Synthesis, pharmacological evaluation and QSAR modeling of mono-substituted 4-phenylpiperidines and 4-phenylpiperazines.
    European journal of medicinal chemistry, 2013, Volume: 62

    A series of mono-substituted 4-phenylpiperidines and -piperazines have been synthesized and their effects on the dopaminergic system tested in vivo. The structure activity relationship (SAR) revealed that the position and physicochemical character of the aromatic substituent proved to be critical for the levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the brain of freely moving rats. In order to investigate how the structural properties of these compounds affect the response, a set of tabulated and calculated physicochemical descriptors were modeled against the in vivo effects using partial least square (PLS) regression. Furthermore, the binding affinities to the dopamine D2 (DA D2) receptor and monoamine oxidase A (MAO A) enzyme were determined for a chosen subset and QSAR models using the same descriptors as in the in vivo model were produced to investigate the mechanisms leading to the observed DOPAC response. These models, in combination with a strong correlation between the levels of striatal DOPAC and the affinities to DA D2 and MAO A, provides a comprehensive understanding of the biological response for compounds in this class.

    Topics: Animals; Dopamine Agonists; Dose-Response Relationship, Drug; Humans; Least-Squares Analysis; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Piperazines; Piperidines; Quantitative Structure-Activity Relationship; Rats; Receptors, Dopamine D2; Structure-Activity Relationship

2013
Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16).
    Journal of medicinal chemistry, 2010, Mar-25, Volume: 53, Issue:6

    Modification of the partial dopamine type 2 receptor (D(2)) agonist 3-(1-benzylpiperidin-4-yl)phenol (9a) generated a series of novel functional D(2) antagonists with fast-off kinetic properties. A representative of this series, pridopidine (4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine; ACR16, 12b), bound competitively with low affinity to D(2) in vitro, without displaying properties essential for interaction with D(2) in the inactive state, thereby allowing receptors to rapidly regain responsiveness. In vivo, neurochemical effects of 12b were similar to those of D(2) antagonists, and in a model of locomotor hyperactivity, 12b dose-dependently reduced activity. In contrast to classic D(2) antagonists, 12b increased spontaneous locomotor activity in partly habituated animals. The "agonist-like" kinetic profile of 12b, combined with its lack of intrinsic activity, induces a functional state-dependent D(2) antagonism that can vary with local, real-time dopamine concentration fluctuations around distinct receptor populations. These properties may contribute to its unique "dopaminergic stabilizer" characteristics, differentiating 12b from D(2) antagonists and partial D(2) agonists.

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Binding, Competitive; Cell Line; Corpus Striatum; Dopamine; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Drug Discovery; Drug Evaluation, Preclinical; Humans; Ligands; Male; Models, Chemical; Molecular Structure; Motor Activity; Piperazines; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2

2010