preproenkephalin has been researched along with 8-(3-chlorostyryl)caffeine* in 2 studies
2 other study(ies) available for preproenkephalin and 8-(3-chlorostyryl)caffeine
Article | Year |
---|---|
Reversion of levodopa-induced motor fluctuations by the A2A antagonist CSC is associated with an increase in striatal preprodynorphin mRNA expression in 6-OHDA-lesioned rats.
The molecular mechanisms involved in the reversion of levodopa-induced motor fluctuations by the adenosine A2A antagonist 8-(3-chlorostryryl) caffeine (CSC) were investigated in rats with a 6-hydroxydopamine (6-OHDA)-induced lesion and compared with the ones achieved by the kappa-opioid agonist, U50,488. Animals were treated with levodopa (50 mg/kg/day) for 22 days and for one additional week with levodopa + CSC (5 mg/kg/day), levodopa + U50,488 (1 mg/kg/day), or levodopa + vehicle. The reversion of the decrease in the duration of levodopa-induced rotations by CSC, but not by U50,488, was maintained until the end of the treatment and was associated with a further increase in levodopa-induced preprodynorphin mRNA in the lesioned striatum, being higher in the ventromedial striatum. The increase in striatal preprodynorphin expression, particularly in the ventromedial striatum, may be related to the reversion of levodopa-induced motor fluctuations in the CSC-treated animals, suggesting a role of the direct striatal output pathway activity in the ventromedial striatum in the pathophysiology of motor fluctuations. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenosine; Adrenergic Agents; Animals; Caffeine; Corpus Striatum; Dynorphins; Dyskinesias; Enkephalins; Immunohistochemistry; In Situ Hybridization; Levodopa; Male; Oxidopamine; Parkinsonian Disorders; Protein Precursors; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; RNA, Messenger | 2006 |
Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of parkinsonism: effect on the activity of striatal output pathways.
In Parkinson's disease (PD), the striatal dopamine depletion and the following overactivation of the indirect pathway of the basal ganglia leads to very early disinhibition of the subthalamic nucleus (STN) that may contribute to the progression of PD by glutamatergic overstimulation of the dopaminergic neurons in the substantia nigra. Adenosine A2A antagonism has been demonstrated to attenuate the overactivity of the striatopallidal pathway. To investigate whether neuroprotection exerted by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC) correlates with a diminution of the striatopallidal pathway activity, we have examined the changes in the mRNA encoding for enkephalin, dynorphin, and adenosine A2A receptors by in situ hybridization induced by subacute systemic pretreatment with CSC in rats with striatal 6-hydroxydopamine(6-OHDA) administration. Animals received CSC for 7 days until 30 min before 6-OHDA intrastriatal administration. Vehicle-treated group received a solution of dimethyl sulfoxide. CSC pretreatment partially attenuated the decrease in nigral tyrosine hydroxylase immunoreactivity induced by 6-OHDA, whereas no modification of the increase in preproenkephalin mRNA expression in the dorsolateral striatum was observed. The neuroprotective effect of the adenosine A2A antagonist CSC in striatal 6-OHDA-lesioned rats does not result from a normalization of the increase in striatal PPE mRNA expression in the DL striatum, suggesting that other different mechanisms may be involved. Topics: Adenosine A2 Receptor Antagonists; Animals; Caffeine; Cell Count; Dynorphins; Enkephalins; Globus Pallidus; Immunohistochemistry; In Situ Hybridization; Male; Microinjections; Neostriatum; Neural Pathways; Neuroprotective Agents; Oxidopamine; Parkinson Disease, Secondary; Protein Precursors; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; RNA, Messenger; Stereotyped Behavior; Substantia Nigra; Sympatholytics; Tyrosine 3-Monooxygenase | 2005 |