pralidoxime and pro-diazepam

pralidoxime has been researched along with pro-diazepam* in 5 studies

Trials

2 trial(s) available for pralidoxime and pro-diazepam

ArticleYear
Pharmacokinetic analysis of pralidoxime after its intramuscular injection alone or in combination with atropine-avizafone in healthy volunteers.
    British journal of pharmacology, 2010, Volume: 161, Issue:8

    Treatment of organophosphate poisoning with pralidoxime needs to be improved. Here we have studied the pharmacokinetics of pralidoxime after its intramuscular injection alone or in combination with avizafone and atropine using an auto-injector device.. The study was conducted in an open, randomized, single-dose, two-way, cross-over design. At each period, each subject received either intramuscular injections of pralidoxime (700 mg), or two injections of the combination: pralidoxime (350 mg), atropine (2 mg), avizafone (20 mg). Pralidoxime concentrations were quantified using a validated LC/MS-MS method. Two approaches were used to analyse these data: (i) a non-compartmental approach; and (ii) a compartmental modelling approach.. The injection of pralidoxime combination with atropine and avizafone provided a higher pralidoxime maximal concentration than that obtained after the injection of pralidoxime alone (out of bioequivalence range), while pralidoxime AUC values were equivalent. Pralidoxime concentrations reached their maximal value earlier after the injection of the combination. According to Akaike and to goodness of fit criteria, the best model describing the pharmacokinetics of pralidoxime was a two-compartment with a zero-order absorption model. When avizafone and atropine were injected with pralidoxime, the best model describing pralidoxime pharmacokinetics becomes a two-compartment with a first-order absorption model.. The two approaches, non-compartmental and compartmental, showed that the administration of avizafone and atropine with pralidoxime results in a faster absorption into the general circulation and higher maximal concentrations, compared with the administration of pralidoxime alone.

    Topics: Adolescent; Adult; Atropine; Dipeptides; Drug Combinations; Drug Interactions; Humans; Injections, Intramuscular; Male; Middle Aged; Models, Statistical; Pralidoxime Compounds

2010
Bioavailability of diazepam after intramuscular injection of its water-soluble prodrug alone or with atropine-pralidoxime in healthy volunteers.
    British journal of pharmacology, 2009, Volume: 157, Issue:8

    The aim of this study was to assess the relative bioavailability of diazepam after administration of diazepam itself or as a water-soluble prodrug, avizafone, in humans.. The study was conducted in an open, randomized, single-dose, three-way, cross-over design. Each subject received intramuscular injections of avizafone (20 mg), diazepam (11.3 mg) or avizafone (20 mg) combined with atropine (2 mg) and pralidoxime (350 mg) using a bi-compartmental auto-injector (AIBC). Plasma concentrations of diazepam were quantified using a validated LC/MS-MS assay, and were analysed by both a non-compartmental approach and by compartmental modelling.. The maximum concentration (C(max)) of diazepam after avizafone injection was higher than that obtained after injection of diazepam itself (231 vs. 148 ng.mL(-1)), while area under the curve (AUC) values were equal. Diazepam concentrations reached their maximal value faster after injection of avizafone. Injection of avizafone with atropine-pralidoxime (AIBC) had no effect on diazepam C(max) and AUC, but the time to C(max) was increased, relative to avizafone injected alone. According to the Akaike criterion, the pharmacokinetics of diazepam after injection as a prodrug was best described as a two-compartment with zero-order absorption model. When atropine and pralidoxime were injected with avizafone, the best pharmacokinetic model was a two-compartment with a first-order absorption model.. Diazepam had a faster entry to the general circulation and achieved higher C(max) after injection of prodrug than after the parent drug. Administration of avizafone in combination with atropine and pralidoxime by AIBC had no significant effect on diazepam AUC and C(max).

    Topics: Adolescent; Adult; Area Under Curve; Atropine; Biological Availability; Chromatography, High Pressure Liquid; Cross-Over Studies; Diazepam; Dipeptides; Drug Combinations; Humans; Injections, Intramuscular; Male; Middle Aged; Pralidoxime Compounds; Prodrugs; Solubility; Tandem Mass Spectrometry; Water

2009

Other Studies

3 other study(ies) available for pralidoxime and pro-diazepam

ArticleYear
Comparative efficacy of diazepam and avizafone against sarin-induced neuropathology and respiratory failure in guinea pigs: influence of atropine dose.
    Toxicology, 2003, Jun-30, Volume: 188, Issue:2-3

    This investigation compared the efficacy of diazepam and the water-soluble prodiazepam-avizafone-in sarin poisoning therapy. Guinea pigs, pretreated with pyridostigmine 0.1 mg/kg, were intoxicated with 4LD(50) of sarin (s.c. route) and 1 min after intoxication treated by intramuscular injection of atropine (3 or 33.8 mg/kg), pralidoxime (32 mg/kg) and either diazepam (2 mg/kg) or avizafone (3.5 mg/kg). EEG and pneumo-physiological parameters were simultaneously recorded. When atropine was administered at a dose of 3 mg/kg, seizures were observed in 87.5% of the cases; if an anticonvulsant was added (diazepam (2 mg/kg) or avizafone (3.5 mg/kg)), seizure was prevented but respiratory disorders were observed. At 33.8 mg/kg, atropine markedly increased the seizure threshold and prevented early respiratory distress induced by sarin. When diazepam was administered together with atropine, seizures were not observed but 62.5% of the animals displayed respiratory difficulties. These symptoms were not observed when using avizafone. The pharmacokinetic data showed marked variation of the plasma levels of atropine and diazepam in different antidote combination groups, where groups receiving diazepam exhibited the lowest concentration of atropine in plasma. Taken together, the results indicate that avizafone is suitable in therapy against sarin when an anticonvulsant is judged necessary.

    Topics: Animals; Anticonvulsants; Atropine; Brain; Chemical Warfare Agents; Cholinesterase Inhibitors; Diazepam; Dipeptides; Drug Interactions; Electroencephalography; Guinea Pigs; Histocytochemistry; Muscarinic Antagonists; Nervous System Diseases; Pralidoxime Compounds; Prodrugs; Pyridostigmine Bromide; Respiratory Insufficiency; Sarin; Seizures

2003
Compared efficacy of diazepam or avizafone to prevent soman-induced electroencephalographic disturbances and neuropathology in primates: relationship to plasmatic benzodiazepine pharmacokinetics.
    Archives of toxicology, 2000, Volume: 74, Issue:8

    We performed an experiment to characterize the toxicity of soman in cynomolgus monkeys in which organophosphorus intoxication was followed by treatment with either the current three-drug therapy atropine/pralidoxime/diazepam or a combination of atropine/pralidoxime/avizafone, avizafone being the water soluble prodrug of diazepam. Clinical, electrophysiological, and histological approaches were combined. When benzodiazepines were injected at the similar molar dose of 0.7 micromol/kg, the protection against soman toxicity was better with the atropine/ pralidoxime/diazepam combination than with the atropine/pralidoxime/avizafone one. Pharmacokinetic studies demonstrated that this difference of efficacy could be explained by a lower plasmatic load of diazepam obtained after injection of avizafone at 0.7 micromol/kg, compared to the administration of diazepam at the same molar dose. Moreover, after injection of avizafone, plasmatic levels of diazepam were achieved faster and declined more rapidly than after administration of diazepam. Compared to diazepam given at a dose of 0.7 micromol/kg, injection of 1 micromol avizafone/kg gave a similar plasmatic load of benzodiazepine, but with a lower time to maximum plasma concentration (tmax) and a higher maximum plasma concentration (Cmax) for plasmatic diazepam. We therefore went on to demonstrate that administration of the atropine/pralidoxime/avizafone combination at a dose 1 micromol benzodiazepine/kg to intoxicated monkeys afforded electrophysiological and histological protection similar to that obtained after administration of atropine/pralidoxime/diazepam at a dose of 0.7 micromol diazepam/kg. Reflections on the possible incorporation of avizafone in three-drug emergency treatment are presented.

    Topics: Animals; Atropine; Brain; Cholinesterase Inhibitors; Diazepam; Dipeptides; Drug Therapy, Combination; Electroencephalography; Macaca fascicularis; Male; Pralidoxime Compounds; Soman

2000
Efficacy of atropine/pralidoxime/diazepam or atropine/HI-6/prodiazepam in primates intoxicated by soman.
    Pharmacology, biochemistry, and behavior, 1997, Volume: 56, Issue:2

    We performed an experiment to characterize the toxicity of soman in cynomolgus monkeys when the organophosphorus intoxication was followed by a treatment with either the three-drug therapy atropine/pralidoxime/diazepam or the association atropine/HI-6/prodiazepam. Clinical, electrophysiological and histological approaches were combined. Our data demonstrate that the protection afforded against soman toxicity was better with the combination atropine/HI-6/prodiazepam compared to atropine/pralidoxime/diazepam. This was observed transiently in term of vigilance and respiratory function of intoxicated animals, but particularly in term of their EEG- and ECG disturbances. Moreover, compared to those treated with atropine/pralidoxine/diazepam, animals treated with atropine/ HI-6/prodiazepam recovered slightly sooner and did not exhibit prostration 2 days after intoxication although their rapidity of movements was not totally restored. The final recovery observed 3 weeks after intoxication was similar for the two groups. The value of the combination of atropine/HI-6/prodiazepam vs atropine/pralidoxime/diazepam to counteract soman toxicity was also confirmed in term of brain neuroprotection since greater lesions were observed with the second three drug treatment three weeks after intoxication.

    Topics: Animals; Antidotes; Atropine; Cholinesterase Inhibitors; Diazepam; Dipeptides; Drug Therapy, Combination; Electrocardiography; Electroencephalography; Macaca fascicularis; Male; Oximes; Poisoning; Pralidoxime Compounds; Prodrugs; Pyridinium Compounds; Soman

1997