pralidoxime has been researched along with asoxime-chloride* in 68 studies
1 review(s) available for pralidoxime and asoxime-chloride
Article | Year |
---|---|
Role of edrophonium in prevention of the re-inhibition of acetylcholinesterase by phosphorylated oxime.
We examined the role of edrophonium in the acceleration phenomenon using mouse wild-type and mutant D74N AChE inhibited with 7-(O,O-diethyl-phosphinyloxy)-1-methylquinolinium methylsulfate (DEPQ). With DEPQ-inhibited wild-type mouse acetylcholinesterase (AChE), the reactivation kinetic profile demonstrated one-phase exponential association only when 2-[hydroxyimino methyl]-1-methylpyridinium chloride (2-PAM) and 1-(2-hydroxy-iminomethyl-1-pyridinium)-1-(4-carboxy-aminopyridi nium)-dimethyl ether hydrochloride (HI-6) were used as reactivators. When 1,1[oxybis-methylene)bis[4-(hydroxyimino)methyl] pyridinium dichloride (LüH6) and 1,1-trimethylene bis(4-hydroxyimino methyl) pyridinium dichloride (TMB4) were used, the reactivation kinetic profile was biphasic in nature. Edrophonium had no effect on reactivation by 2-PAM and HI-6, but significantly accelerated LüH6- and TMB4-induced reactivation of DEPQ-inhibited wild-type mouse AChE. Comparison of the initial and overall reactivation rate constants with five oximes indicated that acceleration by edrophonium may be due to the prevention of re-inhibition of the reactivated enzyme by the phosphorylated oxime (POX) produced during the reactivation. With LüH6 and TMB4, about 2.5-fold increase in the reactivation rate constants was observed in the presence of edrophonium, but little or no effect was observed with the other three oximes. The initial reactivation rate constants were 5.4- and 4.2-fold of the overall rate constants with LüH6 and TMB4 as reactivators respectively, however, very little change was found between the initial and overall rate constants with the other three oximes. In experiments with D74N AChE, for which the inhibition potency of charged organophosphate (OP) was two to three orders less than wild-type enzyme, edrophonium had no effect on the reactivation by LüH6 and TMB4 and the time courses of reactivation were monophasic. The data from mutant enzyme substantiate the involvement of edrophonium in protecting POX re-inhibition of reactivated enzyme formed during the reactivation of OP-inhibited AChE. Topics: Animals; Antidotes; Cholinesterase Inhibitors; Cholinesterase Reactivators; Edrophonium; Kinetics; Mice; Obidoxime Chloride; Oximes; Phosphorylation; Pralidoxime Compounds; Pyridinium Compounds | 1999 |
67 other study(ies) available for pralidoxime and asoxime-chloride
Article | Year |
---|---|
A Comparison of the Neuroprotective and Reactivating Efficacy of a Novel Bispyridinium Oxime K870 with Commonly Used Pralidoxime and the Oxime HI-6 in Tabun-Poisoned Rats.
The comparison of neuroprotective and central reactivating effects of the oxime K870 in combination with atropine with the efficacy of standard antidotal treatment in tabun-poisoned rats.. The neuroprotective effects of antidotal treatment were determined in rats poisoned with tabun at a sublethal dose using a functional observational battery 2 h and 24 h after tabun administration, the tabun-induced brain damage was investigated by the histopathological evaluation and central reactivating effects of oximes was evaluated by the determination of acetylcholinesterase activity in the brain using a standard spectrophotometric method.. The central reactivating efficacy of a newly developed oxime K870 roughly corresponds to the central reactivating efficacy of pralidoxime while the ability of the oxime HI-6 to reactivate tabun-inhibited acetylcholinesterase in the brain was negligible. The ability of the oxime K870 to decrease tabun-induced acute neurotoxicity was slightly higher than that of pralidoxime and similar to the oxime HI-6. These results roughly correspond to the histopathological evaluation of tabun-induced brain damage.. The newly synthesized oxime K870 is not a suitable replacement for commonly used oximes in the antidotal treatment of acute tabun poisonings because its neuroprotective efficacy is only slightly higher or similar compared to studied currently used oximes. Topics: Acetylcholinesterase; Animals; Antidotes; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Organophosphates; Oximes; Poisons; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar | 2021 |
A novel high-performance liquid chromatography with diode array detector method for the simultaneous quantification of the enzyme-reactivating oximes obidoxime, pralidoxime, and HI-6 in human plasma.
Oximes such as pralidoxime (2-PAM), obidoxime (Obi), and HI-6 are the only currently available therapeutic agents to reactivate inhibited acetylcholinesterase (AChE) in case of intoxications with organophosphorus (OP) compounds. However, each oxime has characteristic agent-dependent reactivating efficacy, and therefore the combined administration of complementary oximes might be a promising approach to improve therapy. Accordingly, a new high-performance liquid chromatography method with diode-array detection (HPLC-DAD) was developed and validated allowing for simultaneous or single quantification of 2-PAM, Obi, and HI-6 in human plasma. Plasma was precipitated using 5% w/v aqueous zinc sulfate solution and subsequently acetonitrile yielding high recoveries of 94.2%-101.0%. An Atlantis T3 column (150 × 2.1mm I.D., 3 μm) was used for chromatographic separation with a total run time of 15 min. Quantification was possible without interferences within a linear range from 0.12 to 120 μg/mL for all oximes. Excellent intra-day (accuracy 91.7%-98.6%, precision 0.5%-4.4%) and inter-day characteristics (accuracy 89.4%-97.4%, precision 0.4%-2.2%) as well as good ruggedness were found. Oximes in processed samples were stable for at least 12 h in the autosampler at 15°C as well as in human plasma for at least four freeze-thaw cycles. Finally, the method was applied to plasma samples of a clinical case of pesticide poisoning. Topics: Cholinesterase Reactivators; Chromatography, High Pressure Liquid; Humans; Male; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Reproducibility of Results | 2020 |
Pharmacological and toxicological in vitro and in vivo effect of higher doses of oxime reactivators.
The major function of compounds with an oxime moiety attached to a quarternary nitrogen pyridinium ring is to reactivate acetylcholinesterase inhibited by organophosphorus agent (OP). However, other oxime mechanisms (e.g. modulation of cholinergic or glutamatergic receptor) may be involved in the recovery. The main disadvantage of positively charged reactivators is their low ability to penetrate into the brain although crossing the blood brain barrier could be supported via increasing the dose of administered oxime. Thus, this study presents maximal tolerated doses (MTD) for marketed oximes (TMB-4, MMB-4, LüH-6, HI-6, 2-PAM) and the most promising K-oximes (K027, K048, K203) which can be used in OP therapy in the future. No signs of sarin intoxication were observed in mice treated with 100% MTD of HI-6 in contrast to those treated with atropine and only 5% LD Topics: Animals; Cell Line, Tumor; Cell Survival; Chickens; CHO Cells; Cholinesterase Reactivators; Cricetinae; Cricetulus; Female; Humans; Male; Maximum Tolerated Dose; Mice; Mice, Inbred BALB C; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 2019 |
Effect of six oximes on acutely anticholinesterase inhibitor-induced oxidative stress in rat plasma and brain.
Beside the key inhibition of acetylcholinesterase (AChE), involvement of oxidative stress in organophosphate (OP)-induced toxicity has been supported by experimental and human studies. On the other hand, according to our best knowledge, possible antioxidant properties of oximes, the only causal antidotes to OP-inhibited AChE, have been examined only by a few studies. Thus, we have determined the effect of four conventional (obidoxime, trimedoxime, pralidoxime, asoxime) and two promising experimental oximes (K027, K203) on dichlorvos (DDVP)-induced oxidative changes in vivo. Wistar rats (5/group) were treated with oxime (5% LD Topics: Animals; Aryldialkylphosphatase; Biomarkers; Brain; Cholinesterase Inhibitors; Dichlorvos; Male; Malondialdehyde; Obidoxime Chloride; Organophosphate Poisoning; Oxidative Stress; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Superoxide Dismutase; Trimedoxime | 2018 |
Superior efficacy of HI-6 dimethanesulfonate over pralidoxime methylsulfate against Russian VX poisoning in cynomolgus monkeys (Macaca fascicularis).
Organophosphorus nerve agents still represent a serious risk to human health. In the French armed forces, the current emergency treatment against OP intoxications is a fully licensed wet-dry dual-chambered autoinjector (Ineurope ®), that contains pralidoxime methylsulfate (2-PAM) to reactivate inhibited acetylcholinesterase (AChE), atropine sulfate (AS) and avizafone chlorhydrate (AVZ). While this treatment is effective against several of the known nerve agents, it shows little efficacy against the Russian VX (VR), one of the most toxic compounds. HI-6 dimethanesulfonate (HI-6 DMS) is an oxime able to reactivate in vitro and in vivo VR-inhibited AChE. To confirm the superiority of HI-6 DMS towards 2-PAM prior to licensing, we compared the two 3-drug-combinations (HI-6 vs 2-PAM, 33 and 18 mg/kg respectively, equimolar doses; AS/AVZ 0.25/0.175 mg/kg respectively) in VR-poisoned cynomolgus macaques, the model required by the French drug regulatory agency. In parallel we performed HI-6 pharmacokinetics analysis using a one compartment model. A better efficacy of the HI-6 DMS combination was clearly observed: up to 5 LD Topics: Animals; Blood Gas Analysis; Body Temperature; Cholinesterase Inhibitors; Cholinesterase Reactivators; Cholinesterases; Heart Rate; Lethal Dose 50; Macaca fascicularis; Male; Motor Activity; Mydriasis; Nerve Agents; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Survival Rate | 2018 |
An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: Application to the efficacy assessment of non quaternary reactivators compared to HI-6 and pralidoxime in VX-poisoned mice.
Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 μmol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice. Topics: Acetylcholinesterase; Animals; Blood Chemical Analysis; Blood-Brain Barrier; Chemical Warfare Agents; Cholinesterase Reactivators; Erythrocytes; Half-Life; Humans; Injections, Intraperitoneal; Male; Mice; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Protective Agents; Pyridinium Compounds | 2017 |
A liquid chromatography tandem mass spectrometric method on in vitro nerve agents poisoning characterization and reactivator efficacy evaluation by determination of specific peptide adducts in acetylcholinesterase.
The terroristic availability of highly toxic nerve agents (NAs) highlights the necessity for a deep understanding of their toxicities and effective medical treatments. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for a characterization of the NAs poisoning and an evaluation on the efficacy of reactivators in in vitro was developed for the first time. After exposure to sarin or VX and pepsin digestion, the specific peptides of acetylcholinesterase (AChE) in a purified status, i.e. undecapeptide "GESAGAASVGM" in free, unaged, or aged status was identified and quantified. A key termination procedure is focused to make the reaction system "frozen" and precisely "capture" the poisoning, aging and spontaneous reactivation status of AChE, and the abundance of such specific peptides can thus be simultaneously measured. In our established method, as low as 0.72% and 0.84% inhibition level of AChE induced by 0.5nM sarin and VX can be detected from the measurement of peptide adducts, which benefits a confirmation of NAs exposure, especially at extremely low levels. Comparing with conventional colorimetric Ellman assays, our method provides not only enzyme activity and inhibition rate, but also the precise poisoning status of NAs exposed AChE. Based on the full information provided by this method, the efficacy of reactivators, such as HI-6, obidoxime and pralidoxime, in the typical treatment of NAs poisoned AChE in in vitro was further evaluated. Our results showed that this method is a promising tool for the characterization of NAs poisoning and the evaluation of reactivator efficacy. Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Chromatography, Liquid; Colorimetry; Enzyme Activation; Humans; In Vitro Techniques; Nerve Agents; Obidoxime Chloride; Oximes; Peptide Fragments; Pralidoxime Compounds; Pyridinium Compounds; Sarin; Tandem Mass Spectrometry | 2016 |
Probing the role of amino acids in oxime-mediated reactivation of nerve agent-inhibited human acetylcholinesterase.
In this study, we employed site-directed mutagenesis to understand the role of amino acids in the gorge in oxime-induced reactivation of nerve agent-inhibited human (Hu) acetylcholinesterase (AChE). The organophosphorus (OP) nerve agents studied included GA (tabun), GB (sarin), GF (cyclosarin), VX, and VR. The kinetics of reactivation were examined using both the mono-pyridinium oxime 2-PAM and bis-pyridinium oximes MMB4, HI-6, and HLö-7. The second-order reactivation rate constants were used to compare reactivation of nerve agent-inhibited wild-type (WT) and mutant enzymes. Residues including Y72, Y124 and W286 were found to play important roles in reactivation by bis-pyridinium, but not by mono-pyridinium oximes. Residue Y124 also was found to play a key role in reactivation by HI-6 and HLö-7, while E202 was important for reactivation by all oximes. Residue substitutions of F295 by Leu and Y337 by Ala showed enhanced reactivation by bis-pyridinium oximes MMB4, HI-6, and HLö-7, possibly by providing more accessibility of the OP moiety associated at the active-site serine to the oxime. These results are similar to those observed previously with bovine AChE and demonstrate that there is significant similarity between human and bovine AChEs with regard to oxime reactivation. Topics: Acetylcholinesterase; Amino Acids; Animals; Cattle; Chemical Warfare Agents; CHO Cells; Cholinesterase Reactivators; Cricetulus; Humans; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 2015 |
Reactions of methylphosphonic difluoride with human acetylcholinesterase and oximes--Possible therapeutic implications.
Highly toxic organophosphorus (OP) nerve agents are well characterized regarding chemical, biological and toxicological properties and the effectiveness of standard atropine and oxime therapy. Open literature data on the key nerve agent precursor methylphosphonic difluoride (DF) are scarce. To fill this gap the reactions of DF and its main degradation product methylphosphonofluoridic acid (MF) with human acetylcholinesterase (AChE) and the oximes obidoxime, HI-6 and 2-PAM were investigated in vitro. DF and MF were found to be weak inhibitors of human AChE being at least five orders less potent compared to the nerve agent sarin. Incubation of human AChE with millimolar DF and MF and subsequent addition of obidoxime and HI-6 resulted in a concentration-dependent decrease of AChE activity. This effect was not observed when incubating highly diluted AChE with oximes. The most likely explanation for this phenomenon is an inhibitory effect of phosphonyloximes formed by direct reaction of DF or MF with obidoxime and HI-6. These data indicate that high DF doses, resulting in millimolar blood and tissue DF/MF concentrations, are necessary to induce cholinergic signs and that under these conditions treatment with obidoxime and HI-6 may even worsen the poisoning. Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Interactions; GPI-Linked Proteins; Humans; Obidoxime Chloride; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Time Factors | 2014 |
Syntheses and in vitro evaluations of uncharged reactivators for human acetylcholinesterase inhibited by organophosphorus nerve agents.
Organophosphorus nerve agents (OPNAs) are highly toxic compounds that represent a threat to both military and civilian populations. They cause an irreversible inhibition of acetylcholinesterase (AChE), by the formation of a covalent P-O bond with the catalytic serine. Among the present treatment of nerve agents poisoning, pyridinium and bis-pyridinium aldoximes are used to reactivate this inhibited enzyme but these compounds do not readily cross the blood brain barrier (BBB) due to their permanent cationic charge and thus cannot efficiently reactivate cholinesterases in the central nervous system (CNS). In this study, a series of seven new uncharged oximes reactivators have been synthesized and their in vitro ability to reactivate VX and tabun-inhibited human acetylcholinesterase (hAChE) has been evaluated. The dissociation constant K(D) of inhibited enzyme-oxime complex, the reactivity rate constant kr and the second order reactivation rate constant k(r2) have been determined and have been compared to reference oximes HI-6, Obidoxime and 2-Pralidoxime (2-PAM). Regarding the reactivation of VX-inhibited hAChE, all compounds show a better reactivation potency than those of 2-PAM, nevertheless they are less efficient than obidoxime and HI-6. Moreover, one of seven described compounds presents an ability to reactivate tabun-inhibited hAChE equivalent to those of 2-PAM. Topics: Acetylcholinesterase; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Drug Evaluation, Preclinical; Electrochemistry; GPI-Linked Proteins; Humans; Molecular Structure; Obidoxime Chloride; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Recombinant Proteins | 2013 |
Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase.
Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Topics: Acetylcholinesterase; Animals; Cholinesterase Inhibitors; Drug Interactions; Enzyme Reactivators; Guinea Pigs; Humans; Kinetics; Macaca mulatta; Obidoxime Chloride; Oximes; Paraoxon; Pralidoxime Compounds; Pyridinium Compounds; Rabbits; Rats; Rats, Wistar; Species Specificity; Swine | 2011 |
In vitro effects of acetylcholinesterase reactivators on monoamine oxidase activity.
Administration of acetylcholinesterase (AChE) reactivators (oximes) is usually used in order to counteract the poisoning effects of nerve agents. The possibility was suggested that oximes may show some therapeutic and/or adverse effects through their action in central nervous system. There are no sufficient data about interaction of oximes with monoaminergic neurotransmitter's systems in the brain. Oxime-type AChE reactivators pralidoxime, obidoxime, trimedoxime, methoxime and HI-6 were tested for their potential to affect the activity of monoamine oxidase of type A (MAO-A) and type B (MAO-B) in crude mitochondrial fraction of pig brains. The compounds were found to inhibit fully MAO-A with half maximal inhibitory concentration (IC(50)) of 0.375 mmol/l (pralidoxime), 1.53 mmol/l (HI-6), 2.31 mmol/l (methoxime), 2.42 mmol/l (obidoxime) and 4.98 mmol/l (trimedoxime). Activity of MAO-B was fully inhibited by HI-6 and pralidoxime only with IC(50) 4.81 mmol/l and 11.01 mmol/l, respectively. Methoxime, obidoxime and trimedoxime displayed non-monotonic concentration dependent effect on MAO-B activity. Because oximes concentrations effective for MAO inhibition could not be achieved in vivo at the cerebral level, we suppose that oximes investigated do not interfere with brain MAO at therapeutically relevant concentrations. Topics: Animals; Brain; Cholinesterase Reactivators; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Swine; Trimedoxime | 2011 |
Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman's method.
Assay of acetylcholinesterase (AChE) activity plays an important role in diagnostic, detection of pesticides and nerve agents, in vitro characterization of toxins and drugs including potential treatments for Alzheimer's disease. These experiments were done in order to determine whether indoxylacetate could be an adequate chromogenic reactant for AChE assay evaluation. Moreover, the results were compared to the standard Ellman's method. We calculated Michaelis constant Km (2.06 × 10(-4) mol/L for acetylthiocholine and 3.21 × 10(-3) mol/L for indoxylacetate) maximum reaction velocity V(max) (4.97 × 10(-7) kat for acetylcholine and 7.71 × 10(-8) kat for indoxylacetate) for electric eel AChE. In a second part, inhibition values were plotted for paraoxon, and reactivation efficacy was measured for some standard oxime reactivators: obidoxime, pralidoxime (2-PAM) and HI-6. Though indoxylacetate is split with lower turnover rate, this compound appears as a very attractive reactant since it does not show any chemical reactivity with oxime antidots and thiol used for the Ellman's method. Thus it can be advantageously used for accurate measurement of AChE activity. Suitability of assay for butyrylcholinesterase activity assessment is also discussed. Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dithionitrobenzoic Acid; Enzyme Assays; Indoles; Kinetics; Obidoxime Chloride; Oximes; Paraoxon; Pralidoxime Compounds; Pyridinium Compounds; Substrate Specificity | 2011 |
Muscle force and acetylcholinesterase activity in mouse hemidiaphragms exposed to paraoxon and treated by oximes in vitro.
The therapy of organophosphorus compound (OP) poisoning is still a challenge to clinical toxicologists. To alleviate peripheral respiratory failure oximes, e.g. obidoxime and pralidoxime, are used to reactivate inhibited acetylcholinesterase (AChE) with the intention to restore the disturbed neuromuscular function. In severe human OP poisoning the persistence of poison may counteract effective reactivation by oximes. Therefore, the study was designed to investigate the effect of the clinically used oximes obidoxime, pralidoxime and the experimental compounds HI 6 and HLö 7 in the presence of different paraoxon concentrations. The mouse phrenic nerve-diaphragm preparation was used as a functional model. After washout of paraoxon remarkably low concentrations of obidoxime or HLö 7 were sufficient for restoration of paraoxon-impaired muscle force. In the presence of paraoxon, obidoxime was the most effective oxime and therapeutically used concentrations (10-20microM) were able to restore muscle function even in the presence of 1microM paraoxon. HLö 7 was less effective, but superior to HI 6 and pralidoxime. Generally, a reactivation of AChE to about 30-40% of normal was sufficient for restoration of muscle force. Thus, the data presented strongly support the administration of appropriately dosed oximes, preferably obidoxime, in paraoxon-poisoned patients to restore paraoxon-impaired muscle force. Topics: Acetylcholinesterase; Animals; Diaphragm; Humans; Male; Mice; Mice, Inbred Strains; Obidoxime Chloride; Oximes; Paraoxon; Physical Phenomena; Pralidoxime Compounds; Pyridinium Compounds | 2010 |
Development and validation of a sensitive HPLC method for the quantification of HI-6 in guinea pig plasma and evaluated in domestic swine.
A rapid and small volume assay to quantify HI-6 in plasma was developed to further the development and licensing of an intravenous formulation of HI-6. The objective of this method was to develop a sensitive and rapid assay that clearly resolved HI-6 and an internal standard in saline and plasma matrices. A fully validated method using ion-pair HPLC and 2-PAM as the internal standard fulfilled these requirements. Small plasma samples of 35 microL were extracted using acidification, filtration and neutralization. Linearity was shown for over 4 microg/mL to 1mg/mL with accuracy and precision within 6% relative error at the lower limit of detection. This method was utilized in the pharmacokinetic analysis HI-6 dichloride (2Cl) and HI-6 dimethane sulfonate (DMS) in anaesthetized guinea pigs and domestic swine following an intravenous bolus administration. From the resultant pharmacokinetic parameters a target plasma concentration of 100 microM was established and maintained in guinea pigs receiving an intravenous infusion. This validated method allows for the analysis of low volume samples, increased sample numbers and is applicable to the determination of pharmacokinetic profiles and parameters. Topics: Animals; Cholinesterase Reactivators; Chromatography, High Pressure Liquid; Drug Stability; Guinea Pigs; Linear Models; Male; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Reproducibility of Results; Sensitivity and Specificity; Swine | 2010 |
In vitro reactivation of trichlorfon-inhibited butyrylcholinesterase using HI-6, obidoxime, pralidoxime and K048.
Trichlorfon is a specific inhibitor of cholinesterases. It was typically used as an insecticide; however, trichlorfon was described as useful for symptomatic treatment of Alzheimer's disease some years ago. The presented study is aimed at reactivation of trichlorfon-inhibited butyrylcholinesterase since this enzyme play an important role in Alzheimer's disease as deputy for acetylcholinesterase and furthermore it could be applied as a scavenger in case of overdosing. We used in vitro reactivation test for considering only reactivation efficacy of butyrylcholinesterase that is inhibited by trichlorfon and not reactivation of butyrylcholinesterase inhibited by trichlorfon metabolic products. Four reactivators were used: HI-6, pralidoxime, obidoxime, and K048. Although all of the reactivators seem to be effective at 1 mM concentration, a lower concentration was not able ensure sufficient reactivation. There was also an observed lowering of reactivation efficacy when butyrylcholinesterase was exposed to trichlorfon for a longer time interval. Topics: Acetylcholinesterase; Alzheimer Disease; Butyrylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Humans; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Trichlorfon | 2009 |
Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis.
The widespread use of organophosphorus compounds (OPs) as pesticides and the frequent misuse of OP nerve agents in military conflicts or terrorist attacks emphasize the high clinical relevance of OP poisoning. The toxic symptomatology is caused by inhibition of acetylcholinesterase (AChE). A mainstay of standard antidotal treatment is atropine for antagonizing effects mediated by over stimulation of muscarinic ACh-receptors and oxime to reactivate OP-inhibited AChE. For therapeutic monitoring of oxime treatment in OP poisoning, measurement of erythrocyte AChE is suitable because erythrocyte AChE is an easily accessible surrogate for synaptic AChE. However, measurement of erythrocyte AChE is not standard practice. In contrast, determination of plasma butyrylcholinesterase (BChE) activity is in routine use for monitoring the benefit of oxime therapy. As oxime efficacy is limited with certain OPs (e.g. dimethoate, tabun, soman) alternative therapeutic approaches, e.g. the application of scavengers (BChE) which may sequester OPs before they reach their physiological target, are under investigation. To assess the eligibility of BChE as laboratory parameter and (pseudo catalytic or stoichiometric) scavenger in OP poisoning we initiated an in vitro study under standardized experimental conditions with the objective of determination of kinetic constants for inhibition, reactivation and aging of plasma BChE. It could be shown that, due to limited efficacy of obidoxime, pralidoxime, HI 6 and MMB4 with OP-inhibited BChE, plasma BChE activity is an inappropriate parameter for therapeutic monitoring of oxime treatment in OP poisoning. Furthermore, oxime-induced reactivation is too slow to accomplish a pseudo catalytic function, so that administered BChE may be merely effective as a stoichiometric scavenger. Topics: Acetylcholinesterase; Biomarkers; Butyrylcholinesterase; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocyte Membrane; Humans; Kinetics; Obidoxime Chloride; Organophosphate Poisoning; Organophosphorus Compounds; Oximes; Pesticides; Pralidoxime Compounds; Pyridinium Compounds | 2009 |
Efficacy of two new asymmetric bispyridinium oximes (K-27 and K-48) in rats exposed to diisopropylfluorophosphate: comparison with pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6.
Introduction. The new K-oximes, K-27 [1-(4-hydroxyimino-methylpyridinium)-4-(4-carbamoylpyridinium) propane dibromide] and K-48 [1-(4-hydroxyimino-methylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide], show good in vitro efficacy in protecting acetylcholinesterase from inhibition by different organophosphorus compounds (OPCs), including nerve agents. To assess their efficacy in vivo, the extent of oxime-conferred protection from mortality induced by diisopropylfluorophosphate (DFP) was quantified and compared with that of five established oximes. Materials and Methods. Rats received DFP intraperitoneally in a dosage of 6, 8, or 10 micromol/rat and immediately thereafter intraperitoneal injections of K-27, K-48, pralidoxime, obidoxime, trimedoxime, methoxime, or HI-6. The relative risk (RR) of death over time (48 h) was estimated by Cox survival analysis, comparing results with the no-treatment group. Results. Best protection was observed when K-27 was used, reducing the RR of death to 19% of control RR (p < or = 0.005), whereas obidoxime (RR = 26%, p < or = 0.01), K-48 (RR = 29%, p < or = 0.005) and methoxime (RR = 26%, p < or = 0.005) were comparable. The RR of death was reduced only to about 35% of control by HI-6, to 45% by trimedoxime, and to 59% by 2-PAM (p < or = 0.005). Whereas the differences between the best oximes (K-27, obidoxime, methoxime, and K-48) were not statistically significant; these four oximes were significantly more effective than 2-PAM (p < or = 0.05). The efficacy of K-27 was also significantly higher than that of HI-6, trimedoxime, and 2-PAM (p < or = 0.05). Conclusion. Our data provide further evidence that K-27 is a very promising candidate for the treatment of intoxication with a broad spectrum of OPCs. Topics: Animals; Cholinesterase Inhibitors; Cholinesterase Reactivators; Isoflurophate; Male; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar; Trimedoxime | 2009 |
A structure-activity analysis of the variation in oxime efficacy against nerve agents.
A structure-activity analysis was used to evaluate the variation in oxime efficacy of 2-PAM, obidoxime, HI-6 and ICD585 against nerve agents. In vivo oxime protection and in vitro oxime reactivation were used as indicators of oxime efficacy against VX, sarin, VR and cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy after sc administration of nerve agent. Analysis of in vitro reactivation was conducted with second-order rate contants (k(r2)) for oxime reactivation of agent-inhibited acetylcholinesterase (AChE) from guinea pig erythrocytes. In vivo oxime PR and in vitro k(r2) decreased as the volume of the alkylmethylphosphonate moiety of nerve agents increased from VX to cyclosarin. This effect was greater with 2-PAM and obidoxime (>14-fold decrease in PR) than with HI-6 and ICD585 (<3.7-fold decrease in PR). The decrease in oxime PR and k(r2) as the volume of the agent moiety conjugated to AChE increased was consistent with a steric hindrance mechanism. Linear regression of log (PR-1) against log (k(r2)[oxime dose]) produced two offset parallel regression lines that delineated a significant difference between the coupling of oxime reactivation and oxime protection for HI-6 and ICD585 compared to 2-PAM and obidoxime. HI-6 and ICD585 appeared to be 6.8-fold more effective than 2-PAM and obidoxime at coupling oxime reactivation to oxime protection, which suggested that the isonicotinamide group that is common to both of these oximes, but absent from 2-PAM and obidoxime, is important for oxime efficacy. Topics: Acetylcholinesterase; Animals; Atropine; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocytes; Guinea Pigs; Linear Models; Male; Obidoxime Chloride; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Sarin; Structure-Activity Relationship | 2008 |
Potency of novel oximes to reactivate sarin inhibited human cholinesterases.
Class of monoquaternary pyridinium oximes was in vitro tested as potential reactivators of acetylcholinesterase (AChE; EC 3.1.1.7) inhibited by nerve agent sarin. Human brain homogenate was used as an appropriate source of cholinesterases. Reactivation potency of novel oximes was compared with currently available reactivators - pralidoxime, obidoxime, and HI-6. According to the obtained results, only five reactivators were able to satisfactorily renew cholinesterase potency (pralidoxime, obidoxime, HI-6, 4-PAM, and K119). Unfortunately, none of the novel tested reactivators surpassed the reactivation potency of the currently most promising reactivator, HI-6. This study shows that monoquaternary reactivators are unable to reactivate nerve agent-inhibited AChE. Due to this, in future, only bisquaternary compounds derived from HI-6 or obidoxime should be designed as new potential cholinesterase reactivators. Topics: Acetylcholinesterase; Antidotes; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; Humans; In Vitro Techniques; Molecular Structure; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Sarin; Structure-Activity Relationship | 2008 |
Direct reaction of oximes with crotylsarin, cyclosarin, or VX in vitro.
The direct reaction of seven pyridinium oximes with the organophosphorus compounds (OPCs) crotylsarin, cyclosarin, and VX was studied by spectrophotometry. This method allows to quantify different parameters: (a) the half-life times (t (1/2)) of the oxime-OPC reactions on the basis of the changes in the absorption at the zwitterion (betaine) peak maximum, (b) the first- and second-order rate constants (k (1), k (2)), and (c) the maximum reaction velocities (v (max)). The results of the study show that the reaction velocity of the nerve agents with any of the oximes investigated decreased in the order crotylsarin > cyclosarin > VX. The comparison of the reaction rates of the three therapeutically used oximes (2-PAM, obidoxime, HI 6) with the respective OPC gave the highest rate for crotylsarin and cyclosarin with obidoxime and to a similar degree with HI 6, while in the case of VX the most reactive oxime was HI 6. The reaction velocity of the nerve agents with the monopyridinium oxime 2-PAM was lower as compared to the bispyridinium oximes (obidoxime, HI 6). The results obtained with the two sarin analogues indicate that the direct reaction with 2-PAM, obidoxime, or HI 6 could be used for non-corrosive decontamination purposes, especially, if sensitive biological surfaces like skin, mucous membranes, or wounds are considered. However, in view of the concentrations of nerve agents and oximes, which could be expected during OPC poisoning in man, the maximum reaction velocities would not be high enough to contribute markedly to the detoxication of nerve agents in vivo. Topics: Cholinesterase Inhibitors; Cholinesterase Reactivators; Decontamination; Half-Life; Kinetics; Models, Chemical; Obidoxime Chloride; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Poisoning; Pralidoxime Compounds; Pyridinium Compounds; Sarin; Spectrophotometry, Ultraviolet | 2007 |
Currently used cholinesterase reactivators against nerve agent intoxication: comparison of their effectivity in vitro.
In vitro comparison of reactivation efficacy of five currently used oximes - pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6 (at two concentrations: 10-5 and 10-3 M) - against acetylcholinesterase (AChE; E.C. 3.1.1.7) inhibited by six different nerve agents (VX, Russian VX, sarin, cyclosarin, tabun, soman) and organophosphorus insecticide chlorpyrifos was the aim of this study. As a source of AChE in the experiments, rat brain homogenate was used. According to the results obtained, no AChE reactivator was able to reach sufficient potency for AChE inhibited by all nerve agents used. Moreover, oxime HI-6 (the most effective one) was not able to reactivate tabun- and soman-inhibited AChE. Due to this fact, it could be designated as a partially broad-spectrum reactivator. Topics: Animals; Brain; Chemical Warfare Agents; Chlorpyrifos; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dose-Response Relationship, Drug; Obidoxime Chloride; Organophosphates; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar; Sarin; Soman; Tissue Extracts; Trimedoxime | 2007 |
In vitro reactivation potency of acetylcholinesterase reactivators--K074 and K075--to reactivate tabun-inhibited human brain cholinesterases.
In this work, two oximes for the treatment of tabun-inhibited acetylcholinesterase (AChE; EC 3.1.1.7), K074 (1,4-bis(4-hydroxyiminomethylpyridinium)butane dibromide) and K075 ((E)-1,4-bis(4-hydroxyiminomethylpyridinium)but-2-en dibromide), were tested in vitro as reactivators of AChE. Comparison was made with currently used AChE reactivators (pralidoxime, HI-6, methoxime and obidoxime). Human brain homogenate was taken as an appropriate source of the cholinesterases. As resulted, oxime K074 appears to be the most potent reactivator of tabun-inhibited AChE, with reactivation potency comparable to that of obidoxime. A second AChE reactivator, K075, does not attain as great a reactivation potency as K074, although its maximal reactivation (17%) was achieved at relevant concentrations for humans. Topics: Acetylcholinesterase; Butanes; Caudate Nucleus; Cholinesterase Inhibitors; Cholinesterase Reactivators; Enzyme Activation; Humans; In Vitro Techniques; Obidoxime Chloride; Organophosphates; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 2007 |
In vitro potency of H oximes (HI-6, HLö-7), the oxime BI-6, and currently used oximes (pralidoxime, obidoxime, trimedoxime) to reactivate nerve agent-inhibited rat brain acetylcholinesterase.
The efficacy of H oximes (HI-6, HLö-7), the oxime BI-6, and currently used oximes (pralidoxime, obidoxime, trimedoxime) to reactivate acetylcholinesterase inhibited by two nerve agents (tabun, VX agent) was tested in vitro. Both H oximes (HI-6, HLö-7) and the oxime BI-6 were found to be more efficacious reactivators of VX-inhibited acetylcholinesterase than pralidoxime and obidoxime. On the other hand, their potency to reactivate tabun-inhibited acetylcholinesterase was low and did not reach the reactivating efficacy of trimedoxime and obidoxime. Thus, none of these compounds can be considered to be a broad-spectrum reactivator of nerve agent-inhibited acetylcholinesterase in spite of high potency to reactivate acetylcholinesterase inhibited by some nerve agents. More than one oxime may be necessary for the antidotal treatment of nerve agent-exposed individuals. Topics: Acetylcholinesterase; Animals; Antidotes; Brain; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Male; Obidoxime Chloride; Organophosphates; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Rats; Rats, Wistar; Trimedoxime | 2006 |
Potency of new structurally different oximes to reactivate cyclosarin-inhibited human brain acetylcholinesterases.
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators--K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans. Topics: Acetylcholinesterase; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; Humans; Kinetics; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 2006 |
Reactivation of sarin-inhibited pig brain acetylcholinesterase using oxime antidotes.
Organophosphorus nerve agents inhibit the enzyme, acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators (also known as oximes) are generally used for the reactivation of an inhibited enzyme.. Two new AChE reactivators--K033 and K027--were tested for their in vitro reactivation of sarin-inhibited pig-brain AChE. Their reactivation potencies were compared with the commercially available AChE reactivators, pralidoxime, obidoxime, and HI-6.. Of the oximes tested, the newly developed oxime K027 achieved the highest reactivation potency (100%; concentration of the oxime -10(-2) M). However, oxime HI-6 (33%) and obidoxime (23%) seem to be the best AChE reactivators for human relevant doses (10(-4) M and lower).. For human relevant doses, newly developed oximes (K027 and K033) do not surpass the reactivation potency of the most promising oxime, HI-6. Topics: Acetylcholinesterase; Animals; Antidotes; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dose-Response Relationship, Drug; In Vitro Techniques; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Research Design; Sarin; Swine | 2006 |
Pre-junctional effects of oximes on [3H]-acetylcholine release in rat hippocampal slices during soman intoxication.
In this study, the non-reactivating effects of oximes in the hippocampus of the rat are investigated. The potassium (51 mM) evoked release of [(3)H]-acetylcholine and the liberation of [(3)H]-choline were determined in hippocampal slices following in vitro exposure to soman and five oximes (toxogonin, HI-6, HLö-7, P2S and 2-PAM) in separate experiments by superfusion. In the absence of soman, toxogonin and HLö-7 in particular induced a concentration dependent significant increase in the evoked release of [(3)H]-acetylcholine. There was also a significant effect of HI-6, but the effect was much smaller. Two pralidoxime salts, P2S (methanesulfonate salt) and 2-PAM (methiodide salt), had similar but lower effects that were only observed at relatively high concentrations. Experiments performed following complete inhibition of the acetylcholinesterase activity by soman (1.0 microM) showed that HI-6 and HLö-7 induced a significant decrease in the potassium-evoked release of [(3)H]-acetylcholine, while the liberation of [(3)H]-choline increased. Toxogonin, P2S and 2-PAM did not reduce significantly the evoked release of [(3)H]-acetylcholine. Only limited reactivation of the acetylcholinesterase activity was observed in superfusion experiments with toxogonin, HI-6, P2S and 2-PAM following exposure of hippocampal slices to soman. However, HLö-7 was proved to be relatively more effective in reactivating the acetylcholinesterase activity at high concentrations (50 and 200 microM). The acetylcholinesterase activity was reactivated to approximately 12% and 40% of control, respectively. It is concluded that HI-6 and HLö-7 have important non-acetylcholinesterase reactivating properties following soman poisoning, as may be seen by the significant reduction in the evoked release of [(3)H]-acetylcholine effected by these oximes. HLö-7 is of particular interest in view of its ability to additionally improve reactivation of the acetylcholinesterase activity. Topics: Acetylcholine; Acetylcholinesterase; Animals; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dose-Response Relationship, Drug; Hippocampus; In Vitro Techniques; Male; Neuromuscular Junction; Obidoxime Chloride; Oximes; Potassium; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Rats; Rats, Wistar; Soman; Tritium | 2005 |
In vitro reactivation of sarin-inhibited brain acetylcholinesterase from different species by various oximes.
In vitro as well as in vivo evaluation of the reactivating efficacy of various oximes against nerve agent-inhibited acetylcholinesterase has been usually done with the help of animal experiments. Nevertheless, previously published data indicate that the reactivation potency of oximes may be different in human and animal species, which may hamper the extrapolation of animal data to human data. Therefore, to better evaluate the efficacy of various oximes (pralidoxime, obidoxime, HI-6, K033) to reactivate brain acetylcholinesterase inhibited by sarin by in vitro methods, human, rat and pig brain acetylcholinesterase were used to calculate kinetic parameters for the reactivation. Our results show differences among the species, depending on the type of oxime, and indicate that data from animal experiments needs to be carefully evaluated before extrapolation to humans. Topics: Acetylcholinesterase; Animals; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; Humans; Kinetics; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Sarin; Species Specificity; Structure-Activity Relationship; Swine | 2005 |
Novel neuroprotective effects with O-benzyl derivative of pralidoxime in soman-intoxicated rodents.
Pharmacological properties of oxime reactivators, not related to its ability to regenerate or reactivate nerve agent-inhibited acetylcholinesterase located at nerve synapses, have been reported to be important in protecting against poisoning by the nerve agent soman. Such non-reactivation effects have thus far been associated only with bispyridinium oximes. This study investigated the possibility of creating similar non-reactivation therapeutic effects in the mono-pyridinium ring oxime, pralidoxime (2-PAM) through attachment of alkyl groups of increasing chain length to the oxime functional group. Of the 4 derivatives investigated, only the O-benzyl derivative displayed strong sedative effects in mice and mitigated the development of motor convulsions following soman challenge (1.8 x LD50, subcutaneous). Anticonvulsant effects of this compound were enhanced by co-administration of a non-anticonvulsant dose of atropine sulfate. Administration of equivalent amount of other O-derivatives of pralidoxime failed to elicit similar anticonvulsant actions. Electroencephalographic (EEG) and histopathological studies using the rat model, intoxicated with a lethal dose (1.6 x LD50, s.c.) of soman, confirmed O-benzyl derivative neuroprotective capabilities when used as a pretreatment drug. Microdialysis studies revealed that its neuroprotective effect is related to its ability to attenuate soman-induced increase in acetylcholine. Topics: 3,4-Dihydroxyphenylacetic Acid; Acetylcholine; Analysis of Variance; Animals; Anticonvulsants; Atropine; Benzene Derivatives; Cholinesterase Inhibitors; Cholinesterase Reactivators; Corpus Striatum; Dopamine; Drug Synergism; Electroencephalography; Female; Homovanillic Acid; Hydroxyindoleacetic Acid; Mice; Microdialysis; Neuroprotective Agents; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar; Seizures; Serotonin; Soman; Survival Rate; Time Factors | 2005 |
A comparison of the potency of the oxime HLö-7 and currently used oximes (HI-6, pralidoxime, obidoxime) to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods.
(1) The efficacy of the oxime HLö7 and currently used oximes (pralidoxime, obidoxime, HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. (2) Both H oximes (HLö-7, HI-6) were found to be more efficacious reactivators of sarin and VX-inhibited acetylcholinesterase than pralidoxime and obidoxime. On the other hand, their potency to reactivate tabun-inhibited acetylcholinesterase is very low and does not reach the reactivating efficacy of obidoxime. In the case of cyclosarin, the oxime HI-6 was only found to be able to sufficiently reactivate cyclosarin-inhibited acetylcholinesterase in vitro. (3) Thus, the oxime HLö-7 does not seem to be more efficacious reactivator of nerve agent-inhibited acetylcholinesterase than HI-6 according to in vitro evaluation of their reactivation potency and, therefore, it is not more suitable to be introduced for antidotal treatment of nerve agent-exposed people than HI-6. Topics: Acetylcholinesterase; Animals; Antidotes; Brain; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; In Vitro Techniques; Male; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar | 2005 |
Reactivation and aging kinetics of human acetylcholinesterase inhibited by organophosphonylcholines.
A great number of structurally different organophosphorus compounds (OPs) was synthesized in the past decades to be used as pesticides or chemical warfare agents. Methyl-fluorophosphonylcholines were found to be highly toxic OPs and the acetylcholinesterase (AChE) reactivator pralidoxime was shown to be unable to reactivate inhibited AChE. In the course of the development of more effective AChE reactivators, we have determined the reactivation rate constants of various oximes with human AChE inhibited by methylfluorophosphonylcholine (MFPCh), methylfluoro-beta-phosphonylcholine (MFP beta Ch) and methylfluorophosphonylhomocholine (MFPhCh). In addition, we investigated the potential influence of aging phenomena on the oxime efficacy. Human AChE inhibited by MFPCh, MFP beta Ch or MFPhCh was extremely resistant towards reactivation by oximes. Nevertheless, the newer compounds, HLö 7 and HI 6, were substantially more potent reactivators than obidoxime and pralidoxime. The low oxime efficacy was not due to rapid aging since no decrease in reactivatability was found over 96 h at 37 degrees C. Within this period a substantial spontaneous reactivation was observed, with MFPCh >MFP beta Ch >MFPhCh, which did not follow pseudo-first-order kinetics. In conclusion, the unexpected results, i.e., high resistance of inhibited AChE towards oxime reactivation and aging, and much lower resistance towards spontaneous reactivation, calls for further experiments at a molecular level for a better understanding of the interactions among AChE, its inhibitors and reactivators. Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocyte Membrane; Humans; Obidoxime Chloride; Organophosphorus Compounds; Oximes; Phosphorylcholine; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Spectrophotometry; Time Factors | 2004 |
In vitro reactivation of acetylcholinesterase using the oxime K027.
The ability of a new bisquaternary oxime, K027 (1-[4-hydroxyiminomethylpyridinium]-3-[carbamoylpyridinium] propane dibromide), to reactivate the enzyme acetylcholinesterase (AChE) inhibited by the nerve agents Tabun, sarin and VX was evaluated. Its reactivation potency was compared to the AChE reactivators pralidoxime (2-PAM), obidoxime and HI-6; K027 seems a good reactivator of organophosphates-inhibited AChE. Its reactivation potency is lower compared to the other oximes for reactivation of sarin-inhibited AChE, but it is sufficient to significantly increase the activity of sarin-inhibited AChE. Its reactivation ability is comparable to obidoxime for reactivation of VX- and tabun-inhibited AChE and is higher than the reactivation potency of HI-6, for tabun-inhibited AChE. HI-6 is currently regarded the most promising reactivator of organophosphates-inhibited AChE. Topics: Acetylcholinesterase; Animals; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dose-Response Relationship, Drug; Obidoxime Chloride; Organophosphates; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Sarin; Structure-Activity Relationship | 2004 |
Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
Selective mutants of mouse acetylcholinesterase (AChE; EC 3.1.1.7) phosphonylated with chiral S(P)- and R(P)-cycloheptyl, -3,3-dimethylbutyl, and -isopropyl methylphosphonyl thiocholines were subjected to reactivation by the oximes HI-6 and 2-PAM and their reactivation kinetics compared with wild-type AChE and butyrylcholinesterase (EC 3.1.1.8). Mutations in the choline binding site (Y337A, Y337A/F338A) or combined with acyl pocket mutations (F295L/Y337A, F297I/Y337A, F295L/F297I/Y337A) were employed to enlarge active center gorge dimensions. HI-6 was more efficient than 2-PAM (up to 29000 times) as a reactivator of S(P)-phosphonates (k(r) ranged from 50 to 13000 min(-1) M(-1)), while R(P) conjugates were reactivated by both oximes at similar, but far slower, rates (k(r) < 10 min(-1) M(-1)). The Y337A substitution accelerated all reactivation rates over the wild-type AChE and enabled reactivation even of R(P)-cycloheptyl and R(P)-3,3-dimethylbutyl conjugates that when formed in wild-type AChE are resistant to reactivation. When combined with the F295L or F297I mutations in the acyl pocket, the Y337A mutation showed substantial enhancements of reactivation rates of the S(P) conjugates. The greatest enhancement of 120-fold was achieved with HI-6 for the F295L/Y337A phosphonylated with the most bulky alkoxy moiety, S(P)-cycloheptyl methylphosphonate. This significant enhancement is likely a direct consequence of simultaneously increasing the dimensions of both the choline binding site and the acyl pocket. The increase in dimensions allows for optimizing the angle of oxime attack in the spatially impacted gorge as suggested from molecular modeling. Rates of reactivation reach values sufficient for consideration of mixtures of a mutant enzyme and an oxime as a scavenging strategy in protection and treatment of organophosphate exposure. Topics: Acetylcholinesterase; Alanine; Amino Acid Substitution; Animals; Butyrylcholinesterase; Cholinesterase Reactivators; Computer Simulation; Kinetics; Mice; Models, Molecular; Mutation; Organophosphonates; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Structure-Activity Relationship; Tyrosine | 2004 |
A comparison of the efficacy of a bispyridinium oxime--1,4-bis-(2-hydroxyiminomethylpyridinium) butane dibromide and currently used oximes to reactivate sarin, tabun or cyclosarin-inhibited acetylcholinesterase by in vitro methods.
The efficacy of a bispyridinium oxime 1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide, called K033, and of currently used oximes (pralidoxime, obidoxime, oxime HI-6), to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun cyclosarin) was tested by in vitro methods. The new oxime K033 was found to be a more efficacious reactivator of sarin or cyclosarin-inhibited acetylcholinesterase than pralidoxime and obidoxime but it did not reach the efficacy of oxime HI-6 in the case of the inhibition of acetylcholinesterase by sarin or cyclosarin. On the other hand, oxime K033 was more efficacious than oxime HI-6 in reactivating tabun-inhibited acetylcholinesterase. Thus, oxime K033 seems to be a relatively efficacious broad spectrum acetylcholinesterase reactivator and, therefore, could be useful if no information about the type of nerve agent used was available. Topics: Acetylcholinesterase; Animals; Brain; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Male; Obidoxime Chloride; Organophosphates; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar; Sarin | 2004 |
Neuroprotective effects of currently used antidotes in tabun-poisoned rats.
The neuroprotective effects of antidotes (atropine, pralidoxime/atropine, obidoxime/atropine and HI-6/atropine mixtures) on rats poisoned with tabun at a lethal dose (220 microg/kg intramuscularly; 100% of LD50 value) were studied. The tabun-induced neurotoxicity was monitored using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24 hr and 7 days after tabun challenge. The results indicate that atropine alone is not able to protect the rats from the lethal effects of tabun. Three non-treated tabun-poisoned rats and one tabun-poisoned rat treated with atropine alone died within 24 hr. On the other hand, atropine combined with all tested oximes allows all tabun-poisoned rats to survive at least 7 days following tabun challenge. Obidoxime combined with atropine seems to be the most effective antidotal treatment for the elimination of tabun-induced neurotoxicity in the case of lethal poisoning among tested antidotal mixtures. The antidotal mixture consisting of atropine and HI-6 is significantly less effective than the combination of atropine with obidoxime in the elimination of tabun-induced neurotoxicity in rats at 24 hr following tabun challenge. Pralidoxime in combination with atropine appears to be practically ineffective to decrease tabun-induced neurotoxicity at 24 hours as well as 7 days following tabun poisoning. Due to its neuroprotective effects, obidoxime seems to be the most effective and most suitable oxime for the antidotal treatment of acute tabun exposure among currently used oximes. Thus, the replacement of obidoxime by a more effective acetylcholinesterase reactivator for soman poisoning, the oxime HI-6, can to a small extent diminish the neuroprotective efficacy of antidotal treatment in the case of acute tabun poisonings. Topics: Animals; Antidotes; Atropine; Chemical Warfare Agents; Cholinesterase Reactivators; Drug Therapy, Combination; Male; Motor Activity; Obidoxime Chloride; Organophosphate Poisoning; Organophosphates; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar | 2003 |
Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates.
Standard treatment of poisoning by organophosphates (OP) includes the administration of an antimuscarinic agent, e.g. atropine, and of an acetylcholinesterase (AChE) reactivator (oxime). The presently available oximes, obidoxime and pralidoxime (2-PAM), are considered to be insufficient for highly toxic OPs, e.g. sarin. In the past decades numerous oximes were prepared and tested for their efficacy in OP poisoning, mostly in animal experiments. However, data indicate that the reactivating potency of oximes may be different in humans and animal species, which may hamper the extrapolation of animal data to humans and may pose a problem in the drug licensing of new compounds. In order to provide data for a better evaluation of the reactivating potency of oximes, experiments were undertaken to determine the reactivation rate constants of several oximes with human, rabbit, rat and guinea-pig AChE inhibited by the OPs sarin, cyclosarin and VX. The results show marked differences among the species, depending on the inhibitor and on the oxime, and indicate that the findings from animal experiments need careful evaluation before extrapolating these data to humans. Topics: Acetylcholinesterase; Algorithms; Animals; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Enzyme Activation; Erythrocyte Membrane; Guinea Pigs; Humans; Kinetics; Obidoxime Chloride; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Rabbits; Rats; Sarin; Species Specificity | 2002 |
Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis.
Organophosphates inactivate acetylcholinesterase by reacting covalently with the active center serine. We have examined the reactivation of a series of resolved enantiomeric methylphosphonate conjugates of acetylcholinesterase by two oximes, 2-pralidoxime (2-PAM) and 1-(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium) (HI-6). The S(p) enantiomers of the methylphosphonate esters are far more reactive in forming the conjugate with the enzyme, and we find that rates of oxime reactivation also show an S(p) versus R(p) preference, suggesting that a similar orientation of the phosphonyl oxygen toward the oxyanion hole is required for both efficient inactivation and reactivation. A comparison of reactivation rates of (S(p))- and (R(p))-cycloheptyl, 3,3-dimethylbutyl, and isopropyl methylphosphonyl conjugates shows that steric hindrance by the alkoxy group precludes facile access of the oxime to the tetrahedral phosphorus. To facilitate access, we substituted smaller side chains in the acyl pocket of the active center and find that the Phe295Leu substitution enhances the HI-6-elicited reactivation rates of the S(p) conjugates up to 14-fold, whereas the Phe297Ile substitution preferentially enhances 2-PAM reactivation by as much as 125-fold. The fractional enhancement of reactivation achieved by these mutations of the acyl pocket is greatest for the conjugated phosphonates of the largest steric bulk. By contrast, little enhancement of the reactivation rate is seen with these mutants for the R(p) conjugates, where limitations on oxime access to the phosphonate and suboptimal positioning of the phosphonyl oxygen in the oxyanion hole may both slow reactivation. These findings suggest that impaction of the conjugated organophosphate within the constraints of the active center gorge is a major factor in influencing oxime access and reactivation rates. Moreover, the individual oximes differ in attacking orientation, leading to the presumed pentavalent transition state. Hence, their efficacies as reactivating agents depend on the steric bulk of the intervening groups surrounding the tetrahedral phosphorus. Topics: Acetylcholinesterase; Animals; Cell Line; Cholinesterase Inhibitors; Cholinesterase Reactivators; Humans; Kinetics; Mice; Mutagenesis, Site-Directed; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Protein Conformation; Pyridinium Compounds; Stereoisomerism; Thiocholine; Transfection | 2000 |
Effect of human plasma on the reactivation of sarin-inhibited human erythrocyte acetylcholinesterase.
The reactivation of organophosphate-inhibited acetylcholinesterase (AChE) by oximes inevitably results in the formation of highly reactive phosphoryloximes (POX), which are able to re-inhibit the enzyme. In this study, the dependence of POX formation on AChE concentration was investigated with sarin-inhibited human erythrocyte AChE (EryAChE). A marked dependence was found with obidoxime but not with the experimental oxime HI 6, suggesting great differences in the decomposition rates of the respective POXs. At a physiological erythrocyte content the reactivation of EryAChE was markedly affected by POX with obidoxime and pralidoxime (2-PAM) but not with the newer oximes HI 6 and HLö 7. Addition of extensively dialysed, sarin-treated human plasma reduced the reactivation by obidoxime and 2-PAM even more. Obidoxime and 2-PAM were superior to HI 6 and HLö 7 in reactivating butyrylcholinesterase (BChE). This effect was pronounced in diluted plasma, but was obscured in concentrated plasma, probably because of re-inhibition by the generated POX. Addition of native erythrocytes to sarin-treated plasma resulted in marked inhibition of EryAChE in the presence of obidoxime, suggesting a higher affinity of the POX for EryAChE. The results indicate that obidoxime and 2-PAM may reactivate sarin-inhibited AChE insufficiently due to re-inhibition by the POX formed. In addition, the re-inhibition of Ery-AChE may be aggravated by the POX that is produced during BChE reactivation. These reactions must be regarded as therapeutically detrimental and disqualify those oximes which are capable of forming stable POX by reactivation of BChE. Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocyte Aging; Erythrocytes; Humans; In Vitro Techniques; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Sarin | 2000 |
Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics.
Human poisoning by organophosphates bearing two methoxy groups, e.g. by malathion, paraoxon-methyl, dimethoate and oxydemeton-methyl, is generally considered to be rather resistant to oxime therapy. Since the oxime effectiveness is influenced not only by its reactivating potential but also by inhibition, aging and spontaneous reactivation kinetics, experiments were performed with human acetyl- (AChE) and butyrylcholinesterase (BChE) to determine the respective kinetic constants. The efficacy of obidoxime in reactivating dimethylphosphoryl-AChE was 40, 9 and 3 times higher than of HI 6, pralidoxime and HLö 7, respectively. Aging (t1/2 3.7 h) and spontaneous reactivation (t1/2 0.7 h) occurred concomitantly, with the portion of the aged enzyme being dependent on the presence of excess inhibitor. Calculation of steady-state AChE activity in the presence of inhibitor and oxime revealed that obidoxime was superior to pralidoxime. In addition, organophosphate concentrations up to 10(-6) M (paraoxon-methyl) and 10(-4) M (oxydemeton-methyl) could be counteracted at clinically relevant oxime concentrations (10 microM). These data indicate that oximes may effectively reactivate human dimethylphosphoryl-AChE. Failure of oximes may be attributed to megadose intoxications and to prolonged time intervals between poison uptake and oxime administration. The potency of the oximes to reactivate dimethylphosphoryl-BChE was much lower and the spontaneous reactivation slower (t1/2 9 h), while aging proceeded at a comparable rate. Thus, BChE activity determination for diagnosis and therapeutic monitoring may give no reliable information on AChE status. Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Cholinesterases; Humans; Insecticides; Kinetics; Obidoxime Chloride; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Paraoxon; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Time Factors | 1999 |
Force spectroscopy between acetylcholinesterase molecule and its natural substrate to study the effects of inhibitors and reactivators on enzyme activity.
The force spectrum (FS) between acetylcholinesterase (AChE) molecule and its natural substrates acetylcholine (ACh) and the influences of AChE inhibitors and reactivators have been investigated with atomic force microscopy (AFM) at single molecule level in real-time. AChE and ACh were covalently immobilized onto the surfaces of gold-plated mica and Si3N4 tip of the atomic force microscope respectively. First, AChE was imaged in image mode of AFM and one of AChE molecules was selected as the center of the scanning. Then scanning mode was changed into force scanning mode and FS was recorded in a frequency of 5 x s(-1). Solutions of drugs or toxicants can be injected from the fluid-in tube of the fluid cell at any desired time. The FS between ideally immobilized normal AChE, Inhibited AChE or aged AChE and ACh each had their own shape features. The influences of drugs or toxicants on these features could be observed in real-time on the screen of the computer. These results demonstrated that AFM force spectroscopy could be used as a new method to study the effects of drugs and toxicants on the activity of the enzyme in pharmacology and toxicology. Topics: Acetylcholine; Acetylcholinesterase; Animals; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Enzymes, Immobilized; Kinetics; Microscopy, Atomic Force; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Torpedo | 1999 |
Reactivating potency of obidoxime, pralidoxime, HI 6 and HLö 7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds.
The treatment of poisoning by highly toxic organophosphorus compounds (nerve agents) is unsatisfactory. Until now, the efficacy of new potential antidotes has primarily been evaluated in animals. However, the extrapolation of these results to humans is hampered by species differences. Since oximes are believed to act primarily through reactivation of inhibited acetylcholinesterase (AChE) and erythrocyte AChE is regarded to be a good marker for the synaptic enzyme, the reactivating potency can be investigated with human erythrocyte AChE in vitro. The present study was undertaken to evaluate the ability of various oximes at concentrations therapeutically relevant in humans to reactivate human erythrocyte AChE inhibited by different nerve agents. Isolated human erythrocyte AChE was inhibited with soman, sarin, cyclosarin, tabun or VX for 30 min and reactivated in the absence of inhibitory activity over 5-60 min by obidoxime, pralidoxime, HI 6 or HLö 7 (10 and 30 microM). The AChE activity was determined photometrically. The reactivation of human AChE by oximes was dependent on the organophosphate used. After soman, sarin, cyclosarin, or VX the reactivating potency decreased in the order HLö 7 > HI 6 > obidoxime > pralidoxime. Obidoxime and pralidoxime were weak reactivators of cyclosarin-inhibited AChE. Only obidoxime and HLö 7 reactivated tabun-inhibited AChE partially (20%), while pralidoxime and HI 6 were almost ineffective (5%). Therefore, HLö 7 may serve as a broad-spectrum reactivator in nerve agent poisoning at doses therapeutically relevant in humans. Topics: Acetylcholinesterase; Antidotes; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocytes; Humans; Obidoxime Chloride; Organophosphates; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Soman | 1998 |
Behavioral comparison of the oximes TMB-4, 2-PAM, and HI-6 in rats using operant conditioning.
It has recently been shown that oximes can amplify the ability of cholinesterases to scavenge organophosphorus (OP) agents. Since both OP agents and oximes can disrupt performance, behavioral evaluation of bioscavenger therapies using oximes can be hindered. Therefore, we investigated the ability of three oximes, administered alone, to disrupt performance. The effects of trimedoxime bromide (TMB-4) (3.16-56.2 mg/kg), pralidoxime chloride (2-PAM) (10.0-237.1 mg/kg), and, 1-([[4-amincarbonyl)pyridino]-methoxy]-methyl)-2, 4-bis[(hydroxyimino)methyl] pyridinium dichloride monohydrate (HI-6) (10.0-237.1 mg/kg) were evaluated in rats using a variable-interval 56 (VI 56) s schedule of food reinforcement. Under control conditions, the VI 56 s schedule produced a constant rate of responding (i.e., lever-pressing). All three oximes produced dose-dependent decreases in responding, and the largest doses of TMB-4 and 2-PAM produced complete or nearly complete suppression of responding in all rats. Only the largest dose of HI-6 suppressed responding. Analysis of the dose-effect functions demonstrated that TMB-4 was substantially more potent than 2-PAM, which was slightly more potent than HI-6, for producing response suppression. These results establish doses of each oxime that will not contribute to disruption of responding, and thus, facilitate future evaluation of bioscavenger therapies against OP toxicity. Topics: Animals; Behavior, Animal; Cholinesterase Inhibitors; Conditioning, Operant; Dose-Response Relationship, Drug; Male; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Sprague-Dawley; Reinforcement Schedule; Trimedoxime | 1997 |
Efficacy of atropine/pralidoxime/diazepam or atropine/HI-6/prodiazepam in primates intoxicated by soman.
We performed an experiment to characterize the toxicity of soman in cynomolgus monkeys when the organophosphorus intoxication was followed by a treatment with either the three-drug therapy atropine/pralidoxime/diazepam or the association atropine/HI-6/prodiazepam. Clinical, electrophysiological and histological approaches were combined. Our data demonstrate that the protection afforded against soman toxicity was better with the combination atropine/HI-6/prodiazepam compared to atropine/pralidoxime/diazepam. This was observed transiently in term of vigilance and respiratory function of intoxicated animals, but particularly in term of their EEG- and ECG disturbances. Moreover, compared to those treated with atropine/pralidoxine/diazepam, animals treated with atropine/ HI-6/prodiazepam recovered slightly sooner and did not exhibit prostration 2 days after intoxication although their rapidity of movements was not totally restored. The final recovery observed 3 weeks after intoxication was similar for the two groups. The value of the combination of atropine/HI-6/prodiazepam vs atropine/pralidoxime/diazepam to counteract soman toxicity was also confirmed in term of brain neuroprotection since greater lesions were observed with the second three drug treatment three weeks after intoxication. Topics: Animals; Antidotes; Atropine; Cholinesterase Inhibitors; Diazepam; Dipeptides; Drug Therapy, Combination; Electrocardiography; Electroencephalography; Macaca fascicularis; Male; Oximes; Poisoning; Pralidoxime Compounds; Prodrugs; Pyridinium Compounds; Soman | 1997 |
Acute toxicity of cyclohexylmethylphosphonofluoridate (CMPF) in rhesus monkeys: serum biochemical and hematologic changes.
Changes in serum biochemical and hematological parameters were studied in 20 male rhesus monkeys following acute poisoning by the organophosphate nerve agent cyclohexylmethylphosphonofluoridate (CMPF or GF). Animals were challenged with 5 x LD50 GF (233 micrograms/kg, IM) following pretreatment with pyridostigmine (0.3-0.7 mg/kg per 24 h) and treated with atropine (0.4 mg/kg, IM) and either 2-PAM (25.7 mg/kg, IM) or H16 (37.8 mg/kg, IM) at the onset of clinical signs or at 1 min after exposure. Muscle fasciculations, tremors, or convulsions occurred in 19 of 20 animals. Serum biochemical and hematologic parameters were analyzed 2 days and 7 days after exposure and compared to pre-exposure baseline values. Significant increases in creatine kinase (CK), lactate dehydrogenase (LD), aspartate transaminase (AST), alanine transaminase (ALT) and potassium ion (K+), associated with damage to striated muscle and metabolic acidosis, occurred in both oxime-treated groups 2 days after exposure. Total protein, albumin, red blood cell (RBC) count, hemoglobin concentration (Hb) and hematocrit (Hct), were decreased in both oxime-treated groups at 7 days. The results demonstrate that animals exposed to a single high dose of GF and treated with standard therapy exhibit changes in serum biochemical and hematological indices directly and indirectly associated with their clinical presentations. Topics: Alanine Transaminase; Animals; Antidotes; Aspartate Aminotransferases; Atropine; Biomarkers; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Creatine Kinase; Injections, Intramuscular; L-Lactate Dehydrogenase; Lethal Dose 50; Macaca mulatta; Male; Organophosphorus Compounds; Oximes; Potassium; Pralidoxime Compounds; Pyridinium Compounds; Pyridostigmine Bromide; Seizures | 1995 |
A comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit.
This study compared the efficacy of HI6 and 2-PAM against nerve agent (soman, tabun, sarin, and VX)-induced lethality in the atropinesterase-free rabbits pretreated with vehicle (controls) or pyridostigmine. Treatment was administered at signs or 2 min after agent challenge and consisted of oxime (100 mumol/kg) + atropine (13 mg/kg) (alone or together with diazepam). Twenty-four-h LD50 values were calculated for soman- and tabun-intoxicated animals, whereas 24-h survival was noted in animals given 10 LD50s of sarin or VX. In pyridostigmine and control rabbits intoxicated with soman and treated with oxime + atropine (alone or together with diazepam), HI6 was 3-5 times more effective than 2-PAM. In contrast, HI6 was less effective than 2-PAM against tabun poisoning. In pyridostigmine-pretreated animals exposed to tabun, efficacy was increased more than 3-fold when compare to tabun-challenged animals treated with atropine + HI6 alone. Both oximes were highly effective against sarin and VX. These findings suggest that HI6 could replace 2-PAM as therapy for nerve agent poisoning, because it is superior to 2-PAM against soman, and when used in pyridostigmine-pretreated animals, it affords excellent protection against all four nerve agents when used in combination with atropine (alone or together with diazepam) therapy. Topics: Animals; Antidotes; Atropine; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Diazepam; Lethal Dose 50; Male; Organophosphate Poisoning; Organophosphates; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Poisoning; Pralidoxime Compounds; Pyridinium Compounds; Pyridostigmine Bromide; Rabbits; Sarin; Soman; Specific Pathogen-Free Organisms | 1994 |
The effect of pyridostigmine pretreatment on oxime efficacy against intoxication by soman or VX in rats.
This study was done to assess the effects of pyridostigmine (PYR) on a) the accumulation of labelled VX and soman within the brain, b) the therapeutic efficacy of atropine and oxime (2-PAM or HI-6) against intoxication by VX and soman and c) oxime-induced reactivation of inhibited acetylcholinesterase (AChE). In all experiments, rats were given PYR (131 micrograms/kg, im; I70 dose for whole blood AChE) or vehicle 30 min prior to nerve agent. In estimating 3H-agent the accumulation in the brain or estimating blood AChE activity, sufficient soman (47 micrograms/kg, iv) or VX (21.3 micrograms/kg, iv) was given to inhibit 50% of brain AChE activity. In assessing therapeutic efficacy and oxime-induced reactivation of blood AChE, rats were pretreated with PYR, challenged with agent and treated with atropine (16 mg/kg, im) and HI-6 or 2-PAM (100 umoles/kg, im) 30 sec post agent. Whole blood was collected by tail bleeding to monitor peripheral AChE activity at various time points before and after PYR and challenge. Pyridostigmine failed to alter covalent binding of labelled VX or soman in the brain. The 24-hr survival data showed that PYR reduced the therapeutic benefit of atropine and oxime against VX intoxication (but not soman). Protective ratios in VX-challenged rats given vehicle or PYR and treated with atropine + 2-PAM decreased slightly from 2.5 to 2.1 (p > .05), whereas with atropine + HI-6 they decreased significantly from 3.8 to 2.4. Also, AChE reactivation by HI-6 in VX-challenged rats was greater (p < .05) in vehicle- than in PYR-pretreated rats. HI-6 significantly reactivated AChE activity in both pretreatment groups (PYR or vehicle) given soman. The data suggest that PYR decreases the overall recovery of inhibited AChE in VX-challenged rats given HI-6; under the conditions used, this adverse effect decreases atropine+oxime efficacy against VX-induced lethality. Topics: Animals; Antidotes; Cholinesterase Inhibitors; Male; Organothiophosphorus Compounds; Oximes; Poisoning; Pralidoxime Compounds; Pyridinium Compounds; Pyridostigmine Bromide; Rats; Rats, Sprague-Dawley; Soman | 1992 |
Evaluation of the toxicity, pathology, and treatment of cyclohexylmethylphosphonofluoridate (CMPF) poisoning in rhesus monkeys.
Cyclohexylmethylphosphonofluoridate (CMPF) is an organophosphate cholinesterase inhibitor with military significance. The purpose of these studies was 1) to determine the acute toxicity of CMPF in the male rhesus monkey, 2) to evaluate the efficacy of pyridostigmine (PYR) pretreatment plus atropine and oxime (2-PAM or H16) treatment, and 3) to evaluate the pathological consequences of acute poisoning. An i.m. LD50 of CMPF was estimated using an up-and-down dose selection procedure and 12 animals. The 48-h and 7-day LD50 was 46.6 micrograms/kg, i.m. In the protection experiments, pyridostigmine (0.3-0.7 mg/kg/24 h) was administered by surgically implanted osmotic minipumps for 3-12 days resulting in 21-65% inhibition of erythrocyte acetylcholinesterase activity. Animals were challenged with 5 x L50 CMPF (233 micrograms/kg) and treated with atropine (0.4 mg/kg) and either 2-PAM (25.7 mg/kg) or HI6 (37.8 mg/kg) at the onset of signs or 1 min after challenge. Osmotic pumps were removed within 30 min after agent challenge. Pyridostigmine, atropine, and either 2-PAM or H16 were completely effective against CMPF, saving ten of ten animals in each group. In comparison, three of five animals challenged with 5 x LD50 of soman and treated with atropine and 2-PAM survived 7 days. The primary histologic lesions in the acute toxicity group were neuronal degeneration/necrosis and spinal cord hemorrhage. The CMPF treated groups (total of 20 animals) had minimal nervous system changes with no significant lesion difference resulting from the different oxime therapies. The primary non-neural lesions were degenerative cardiomyopathy and skeletal muscle degeneration which occasionally progressed to necrosis and mineralization.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acetylcholinesterase; Animals; Antidotes; Atropine; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Lethal Dose 50; Macaca mulatta; Male; Organophosphate Poisoning; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Pyridostigmine Bromide | 1992 |
Efficacy of various oximes against GF (cyclohexyl methylphosphonofluoridate) poisoning in mice.
The efficacy of oxime (HI-6, toxogonin or PAM Cl) therapy against GF (cyclohexyl methylphosphonofluoridate) poisoning was assessed in mice. It was found that the combinations of atropine and either toxogonin or HI-6 were effective therapies against GF poisoning. PAM therapy was ineffective. HI-6 was the only oxime which reactivated GF inhibited acetylcholinesterase. This might explain the reason why the HI-6 treated mice appeared to recover more quickly from the incapacitating effects following GF poisoning. Topics: Animals; Antidotes; Atropine; Chemical Warfare Agents; Cholinesterase Reactivators; In Vitro Techniques; Lethal Dose 50; Male; Mice; Mice, Inbred Strains; Nervous System Diseases; Obidoxime Chloride; Organophosphate Poisoning; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 1992 |
Therapy of organophosphate poisoning in the rat by direct effects of oximes unrelated to ChE reactivation.
Isolated rat diaphragm preparations treated with soman or with the irreversible and oxime resistant cholinesterase (ChE) inhibitor S27 showed a considerable recovery of neuromuscular transmission (NMT) during incubation with the (bis)pyridinium oximes HI-6, HGG-12, P2S and obidoxime. In the soman-treated preparations this NMT recovery was predominantly caused by reactivation of acetylcholinesterase (AChE) but in the S27-treated preparations it was caused by a direct (pharmacological) effect unrelated to enzyme reactivation. Atropinized rats were artificially ventilated after injection with 3 x LD50 soman for 3 h and then treated with HI-6, i.e. at a time when oxime reactivation of soman inhibited ChE is no longer possible. Nevertheless, these rats started to breathe spontaneously and 50-60% survived more than 24 h, whereas all control animals (saline instead of HI-6) died within 10 min after artificial ventilation was terminated. In such animals no significant reactivation of ChE activity at various time intervals following HI-6 treatment was found, either in the diaphragms or in the brains. There was a significant amount of NMT (50%) in vitro in diaphragms obtained from these animals. This NMT did not improve in vitro in the presence of HI-6 and was not inhibited by soman administered to the medium. It is concluded that in this case the NMT found was based on synaptic adaptation to the continued inhibition of ChE and that the survival of the animals might be due to a combination of this synaptic adaptation and central direct effects of HI-6. Topics: Animals; Antidotes; Blood-Brain Barrier; Cholinesterase Reactivators; Diaphragm; In Vitro Techniques; Male; Neuromuscular Junction; Obidoxime Chloride; Organophosphate Poisoning; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Respiratory Insufficiency; Synaptic Transmission | 1991 |
Effectiveness of oximes 2-PAM and HI-6 in recovery of muscle function depressed by organophosphate agents in the rat hemidiaphragm: an in vitro study.
Phrenic nerve diaphragm muscles of young adult rats were used to study the ability of the oximes 2-PAM and HI-6 to recover muscle function depressed by organophosphate (OP) agents. The single twitch of diaphragm muscles which were exposed to soman (0.2 microM) recovered after washing with saline for 3 hr, but the muscles pretreated with sarin (0.4 microM), VX (0.2 microM), or tabun (0.4 microM) showed only partial recovery. In addition, after 3 hr washing, the muscles pretreated with soman as well as with tabun did not recover the tetanus sustaining ability (TSA), yet complete recovery was observed with muscles pretreated with sarin and VX. These results indicate that the OPs have different effects on muscle contractile properties and that VX- and sarin-pretreated muscles recover equally well after wash with physiological solution. The recovery of twitch tension of diaphragm muscles by 2-PAM and HI-6 was similar to that achieved by washing with saline for 3 hr for sarin- and soman-exposed muscles. The most remarkable differences were seen in the recovery of TSA. Both 2-PAM and HI-6 recovered the TSA of muscles that were pretreated with sarin and VX. Although 2-PAM recovered the TSA after tabun pretreatment, HI-6 had no discernible effect. On the other hand, HI-6 recovered the TSA of soman-pretreated muscles but 2-PAM did not. The effectiveness of muscle function recovery was not related to the oximes' ability to reactivate AChE, thus indicating that the recovery of muscle contractility may be attributed to a direct effect of these compounds on the muscle. Topics: Animals; Cholinesterase Reactivators; Diaphragm; Electric Stimulation; Female; In Vitro Techniques; Muscle Contraction; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Inbred Strains; Respiratory Muscles | 1991 |
A comparison of cholinergic effects of HI-6 and pralidoxime-2-chloride (2-PAM) in soman poisoning.
The effects of HI-6 and pralidoxime chloride (2-PAM) on soman-induced lethality, time to death and several cholinergic parameters in rats were compared to understand the beneficial action of HI-6. Treatment with atropine sulfate (ATS) or HI-6 alone protected against 1.2 and 2.5 LD50s of soman respectively, whereas 2-PAM or methylated atropine (AMN) alone afforded no protection. Addition of ATS, but not AMN, to HI-6-treated rats enhanced the protection from 2.5 to 5.5 LD50s. HI-6 increased the time-to-death, while 2-PAM had no effect; a combination of HI-6 and ATS provided the most significant increase in time-to-death. Cholinesterase (ChE) activity was not altered in any tissue by ATS, HI-6 or 2-PAM treatment individually, but was markedly inhibited in all tissues by 100 micrograms/kg of soman. In soman-poisoned rats, the HI-6, but not the 2-PAM, group had significantly higher levels of ChE in blood and other peripheral tissues than did the group given soman alone. Neither HI-6 nor 2-PAM affected soman-inhibited ChE in the brain. Additional ATS treatment had no effect on ChE activity. HI-6 and 2-PAM neither modified baseline brain acetylcholine (ACh) or choline (Ch) levels nor protected against soman-induced ACh or Ch elevation. 2-PAM exhibited a 4-fold more potent in vitro inhibition of 3H-quinuclidinyl benzilate (3H-QNB) binding and sodium-dependent high-affinity Ch uptake (HACU) than did HI-6 in brain tissues. The findings that 2-PAM is a more potent in vitro inhibitor of muscarinic receptor binding and HACU than HI-6, and yet neither elevates ChE activity in the periphery nor protects rats against soman poisoning, indicate the importance of higher ChE activity in the periphery of HI-6-treated rats. Maintenance by HI-6 of a certain amount of active ChE in the periphery appears to be important for survival after soman exposure. Topics: Acetylcholinesterase; Animals; Atropine; Brain; Cholinesterase Reactivators; Cholinesterases; Drug Interactions; Lethal Dose 50; Male; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Quinuclidinyl Benzilate; Rats; Rats, Inbred Strains; Receptors, Muscarinic; Soman | 1991 |
Evaluation of phosphinates as potential pretreatments for nerve agents.
To assess the utility of phosphinates as pretreatments against nerve agents, experiments were conducted to determine whether oximes can reactivate phosphinate-inhibited guinea pig acetylcholinesterase (AChE) and whether the toxicity of phosphinates is reduced by treatment with atropine and/or oxime. Three phosphinates, 4-nitrophenyl methyl(phenyl) phosphinate (MPP), 4-nitrophenyl chloromethyl(phenyl) phosphinate (CMPP), and 4-nitrophenyl 2-methoxyphenyl(methyl) phosphinate (MPMP), were used in these experiments. In the first group of experiments, 2-PAM or HI-6 was administered, im, 2 min after peak inhibition of whole blood AChE activity by the phosphinates. Both oximes significantly reactivated MPP- or CMPP-inhibited AChE; however, HI-6 was the better reactivator in both cases. Oximes were ineffective against MPMP. Efficacy studies revealed that neither HI-6 nor 2-PAM potentiated the toxic effects of MPP or CMPP and that atropine/oxime therapy provided greater protection (up to 100 LD50s) against either phosphinate than any single therapy. The reactivation and efficacy data, especially for CMPP, support the concept that oxime sensitive phosphinates may be useful as pretreatments against nerve agent intoxication. Topics: Acetylcholinesterase; Animals; Atropine; Cholinesterase Reactivators; Evaluation Studies as Topic; Guinea Pigs; Injections, Intramuscular; Lethal Dose 50; Male; Nitrobenzenes; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 1991 |
HI-6 and 2-PAM in sheep: pharmacokinetics and effects on muscle tissue following intramuscular injection.
The pharmacokinetics of 2-PAM, a component of the current nerve agent antidote therapy for U.S. military forces was compared to the pharmacokinetics of another acetylcholinesterase reactivator HI-6. Additionally, the effects of these compounds on muscle tissue following intramuscular injection was examined. Plasma concentrations of the oximes were determined by HPLC. Plasma concentration-time profiles for both oximes fit a one-compartment open model with first-order absorption and elimination. The results demonstrate that the half-time of absorption of HI-6 was significantly higher than that for 2-PAM. Musculoirritancy was assessed on the basis of quantitative histological examinations of the injection sites and by the measurement of serum creatinine phosphokinase. Comparison of the scores from the histological sections demonstrate no difference between the two oximes. Serum creatinine phosphokinase values were elevated following injections of HI-6, but were not consistently elevated following the 2-PAM injections. Topics: Animals; Cholinesterase Reactivators; Creatine Kinase; Half-Life; Injections, Intramuscular; Irritants; Isoenzymes; Muscles; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Sheep | 1991 |
Receptor-mediated presynaptic facilitation of quantal release of acetylcholine induced by pralidoxime in Aplysia.
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation. Topics: Acetylcholine; Acetylcholinesterase; Action Potentials; Animals; Aplysia; Atropine; Enzyme Activation; Hemicholinium 3; Neurons; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Receptors, Nicotinic; Secretory Rate; Synapses; Tubocurarine | 1990 |
Evaluation of several oximes as reactivators of unaged soman-inhibited whole blood acetylcholinesterase in rabbits.
The antidotal benefit of oximes against organophosphorus (OP) anticholinesterase intoxication is thought to be due to reactivation of the OP-inhibited acetylcholinesterase (AChE). This study was conducted to determine whether the antidotal efficacy against soman by the oximes 2-hydroxyiminomethyl-3-methyl-1-[2-(3-methyl-3-nitrobutyl oxymethyl)]-imidazolium Cl (ICD 467) and 1,1'-methylenebis[4-(hydroxyiminomethyl) pyridinium] di-Cl (MMB-4) resulted, in part, from reactivation of the inhibited AChE. These oximes were tested in parallel with pralidoxime Cl (2-PAM) and 1-(2-hydroxyiminomethyl-1-pyridinio-3-(4-carbamoyl-1-pyridinio+ ++)-2-oxapropane di-Cl (HI-6). Rabbits were atropinized (8 mg/kg, i.m.) and intoxicated with soman (13 micrograms/kg, i.v.; 1.2 x LD50) 5 min later. Three minutes after soman, animals were treated with oxime (50, 100 or 150 mumol/kg, i.m.). Whole blood was collected from a catheter in the central artery of the ear just before soman, at 2 min after soman and at 2, 5, 10, 15, 30, and 60 min after oxime or vehicle for determination of AChE activity. Shortly thereafter, animals were anesthetized and exsanguinated with immediate flushing using heparinized saline. AChE activity was also determined on the cortex, medulla-pons and diaphragm to assess central and peripheral reactivation. Treatment with HI-6 or MMB-4 (50 mumol/kg, i.m.) resulted in significant (P less than 0.05) reactivation of soman-inhibited whole blood AChE and diaphragm cholinesterase (ChE), but not brain AChE. In contrast, 2-PAM was completely ineffective in reactivating soman-inhibited AChE. HI-6 was significantly better than MMB-4 in reactivating blood AChE; they were essentially equal against soman-inhibited diaphragm ChE. Three animals exposed to soman and treated with ICD 467 died within 15 min. When animals not exposed to soman were treated with ICD 467 (25 mumol/kg, i.m.), whole blood AChE activity was depressed by 60% within 5-10 min after treatment. Furthermore, ICD 467 failed to reactivate significantly unaged soman-inhibited erythrocyte AChE, in vitro. These observations indicate that ICD 467 would be contraindicated as a therapy for anti-ChE intoxication and that the efficacy of HI-6 or MMB-4 can be explained, in part, by reactivation of soman-inhibited AChE. Topics: Acetylcholinesterase; Animals; Cerebral Cortex; Cholinesterase Inhibitors; Diaphragm; Dose-Response Relationship, Drug; Imidazoles; Medulla Oblongata; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rabbits; Soman; Time Factors | 1990 |
The relationship between oxime-induced reactivation of carbamylated acetylcholinesterase and antidotal efficacy against carbamate intoxication.
The efficacy of the oximes pyridinium-2-aldoxime methochloride (2-PAM) and 1-[[[(4-aminocarbonyl)pyridinio]methoxy]methyl]-2-[(hydro xyimino) methyl]pyridinium dichloride (HI-6), in combination with atropine (At), against lethality by either carbaryl (CA) or physostigmine (Phy) was investigated in rats. The protection by At, 8 mg/kg, iv, against CA intoxication was reduced by 2-PAM (22 mg/kg, iv) and HI-6 (50 mg/kg, iv) from a protective ratio (PR) of 6.6 to 3.5 and 2.3, respectively. However, in Phy-intoxicated rats, the administration, iv, of At alone, At + 2-PAM, or At + HI-6 at 1 min following Phy provided good protection and resulted in PRs of 7.2, 8.8, and 23.3, respectively. In experiments on decarbamylation of inhibited acetylcholinesterase (AChE), HI-6 and 2-PAM accelerated (p less than 0.05) the decarbamylation of Phy-inhibited AChE in vitro, and HI-6 decreased (p less than 0.05) the inhibition of whole blood AChE in Phy-intoxicated rats. These findings show that the protection was increased substantially by the use of either 2-PAM or HI-6 against Phy-induced lethality, whereas the use of oximes against carbaryl poisoning was contraindicated. Furthermore, even though CA and Phy are both N-methyl carbamates, the data indicate that there is no adverse interaction between 2-PAM or HI-6 and Phy. Topics: Acetylcholinesterase; Animals; Antidotes; Atropine; Carbaryl; Cholinesterase Inhibitors; Cholinesterase Reactivators; Drug Interactions; Erythrocytes; Lethal Dose 50; Male; Oximes; Physostigmine; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Inbred Strains | 1989 |
Mechanism of action of HI-6 on soman inhibition of acetylcholinesterase in preparations of rat and human skeletal muscle; comparison to SAD-128 and PAM-2.
HI-6 is presently considered the most potent oxime antidote against soman poisoning in mice, rats, dogs and monkeys. However, it is still an open question whether efficiency of HI-6, observed in experimental animals, can be extrapolated to soman intoxicated humans. In this paper efficiency of HI-6 and possible mechanisms of action were compared in rat and human fresh muscle preparations. In rat muscle, about 50% of control AChE activity could be recovered by both therapeutic (5 min after soman) and prophylactic (5 min before soman) application of HI-6. On the other hand, in human muscle therapeutic treatment restored only 5%, while prophylactic application of HI-6 again resulted in about 50% recovery of control AChE activity. As revealed by comparison of the prophylactic effects of HI-6 and the non-oxime bispyridinium compound SAD-128, competitive inhibition of AChE plays a minor role as a protective mechanism. Immediate reactivation of rapidly aging human AChE must therefore be instituted for successful protective treatment by HI-6. Retardation of aging, a direct effect of SAD-128, was roughly estimated to improve reactivation by HI-6 for about 10% of control AChE activity of the human muscle. PAM-2 proved completely inefficient as a therapeutic and as a prophylactic agent on both rat and human muscle preparations. Topics: Acetylcholinesterase; Animals; Antidotes; Cholinesterase Inhibitors; Female; Humans; In Vitro Techniques; Muscles; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Inbred Strains; Soman | 1989 |
Acetylcholinesterase reactivators modify the functional properties of the nicotinic acetylcholine receptor ion channel.
Interactions of the oximes pyridine-2-aldoxime (2-PAM) and 1-(2-hydroxyiminomethyl-1-pyridino)-3-(4-carbamoyl-1-pyridino++ +)-2-oxapropane dichloride (HI-6), reactivators of phosphorylated acetylcholinesterase enzyme, with the nicotinic acetylcholine receptor-ion channel complex were studied using electrophysiological techniques. Single channel studies revealed that both oximes increased the opening probability of channels that were activated by acetylcholine. The oximes reduced mean channel open time and burst time in a concentration- and voltage-dependent manner. End-plate current amplitude was increased by 2-PAM (10-100 microM) and HI-6 (1 microM) but depressed at higher concentrations of these agents. The oximes decreased the time constant of end-plate current decay, particularly at hyperpolarized membrane potentials. HI-6 depressed indirect twitch response of the sartorius muscle, whereas 2-PAM caused a facilitation followed by depression. Both agents directly hydrolyzed acetylthiocholine, in addition to weakly inhibiting acetylcholinesterase. Our study demonstrates a direct molecular interaction of the oximes HI-6 and 2-PAM with the natural agonist molecule and with the acetylcholine receptor-ion channel complex. These effects can explain the excitatory and inhibitory actions of both agents, and may form the basis for their antidotal effectiveness against organophosphorus poisoning. The quantitative differences between the effects of 2-PAM and HI-6 on the above parameters are important in view of their differential antidotal efficacies. Topics: Acetylcholinesterase; Acetylthiocholine; Animals; Cholinesterase Reactivators; In Vitro Techniques; Ion Channels; Kinetics; Membrane Potentials; Muscle Denervation; Muscles; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rana pipiens; Receptors, Nicotinic | 1988 |
Comparison of serum concentrations of the acetylcholinesterase oxime reactivators HI-6, obidoxime, and PAM to efficacy against sarin (isopropyl methylphosphonofluoridate) poisoning in rats.
A comparison of serum concentrations of the oximes HI-6 [1-(((4-aminocarbonyl)-pyridino)methoxy)methyl)-2(hydroxy imino)methyl- pyridinium dichloride], PAM [2-[hydroxyimino)methyl-1-methylpyridinium chloride], and obidoxime [1,1'-(oxybis(methylene]bis(4-((hydroxyimino) methyl)-pyridinium dichloride] to the efficacy against sarin (350 micrograms/kg; sc) lethality was evaluated in rats. The oximes were administered prophylactically by means of Alzet osmotic minipumps. Atropine (17.4 mg/kg; im) was administered immediately following sarin (350 micrograms/kg; sc) administration. At serum concentrations of 3.6, 3.6, and 3.3 micrograms/ml for HI-6, obidoxime, and PAM, respectively, the 24-hr mortality following sarin poisoning was 0, 90, and 20%. The serum oxime concentrations (ED50 values) for HI-6, obidoxime, and PAM against a 3 LD50 dose of sarin were 0.72, 9.05, and 2.56 micrograms/ml, respectively. HI-6 was determined to be the most efficacious oxime when combined with atropine against sarin poisoning followed in order by PAM and obidoxime. Topics: Acetylcholinesterase; Animals; Male; Obidoxime Chloride; Organophosphate Poisoning; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Inbred Strains; Sarin | 1987 |
Protective effects of oximes HI-6 and PAM-2 applied by osmotic minipumps in quinalphos-poisoned rats.
Protective and reactivating effects of oximes HI-6 and PAM-2, combined with atropine and diazepam, were investigated in quinalphos-poisoned rats. In protective experiments, atropine and diazepam decreased acute toxicity of the insecticide 3.3 times. Later administration of a single injection of oximes led to further improvement of protective indexes which were 1.45 (PAM-2) and 1.52 (HI-6) times larger. Plasma HI-6 concentrations below 1 microgram/ml, continuously maintained by osmotic minipumps and supported by a single administration of atropine and diazepam, protected animals from 18.6 LD50 of quinalphos, while its higher concentrations (ranging from 1 to 5.4 micrograms/ml) provided markedly better protection (up to 72 LD50). Corresponding plasma PAM-2 concentrations were even more effective in overcoming toxic effects of quinalphos. PAM-2 concentrations, continuously maintained in plasma, were distinctly better in protecting and reactivating peripheral cholinesterase activity than corresponding HI-6 concentrations in the case of quinalphos poisoning. On the basis of our findings we suggest that continuous maintenance of low oxime concentrations is preferred to single oxime administration in the therapy of organophosphate intoxications. Topics: Animals; Antidotes; Atropine; Brain; Cholinesterase Reactivators; Cholinesterases; Diazepam; Insecticides; Lethal Dose 50; Male; Muscles; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats | 1987 |
Oxime-induced decarbamylation and atropine/oxime therapy of guinea pigs intoxicated with pyridostigmine.
The generally accepted explanation for the effects of oximes in countering organophosphorus (OP) anticholinesterase is reactivation of the inhibited acetylcholinesterase (AChE). With soman, the inhibited AChE rapidly becomes resistant to oxime reactivation due to a phenomenon called aging. Thus, pretreatment with pyridostigmine (Py) or physostigmine (Ph) followed by atropine sulfate therapy is required to achieve significant protection against soman; the effectiveness of a pretreatment/therapy (P/T) regimen can be further increased against certain OPs (e.g. sarin and VX) by including an oxime in the therapy regimen. The P/T regimen is clouded by a controversy concerning the use of oximes in the treatment of carbamate intoxication, because 2-PAM has been reported to exacerbate intoxication by some carbamates and to have no effect on decarbamylation rates. To better understand the role of oxime therapy in the theory of pretreatment of OP intoxication we examined the effects of 2-PAM and HI-6 on the rate of decarbamylation of Py-inhibited erythrocyte AChE in vitro and in vivo, and studied the effects of atropine plus 2-PAM or HI-6 on Py toxicity. In decarbamylation experiments, Py-inhibited guinea pig erythrocytes were washed free of excess Py and incubated with vehicle or oxime (2 X 10(-4) M, pH 7.3 and 37 degrees C). Aliquots were assayed for AChE activity at various times during a 60 min incubation period. Rate constants were calculated and compared to determine whether the presence of oxime affected decarbamylation. The data from in vitro and in vivo experiments revealed that oximes accelerated the decarbamylation (p less than 0.05) of inhibited AChE. Lethality data for Py-treated guinea pigs showed that treatment with atropine (23 mumoles/kg, im) plus 2-PAM or HI-6 (145 mumoles/kg, im) at one min after injection of Py increased the protective ratio from 4.2 (atropine only) to 5.1 and 12.2, respectively. It is suggested that the enhanced therapeutic efficacy of atropine by oximes against Py intoxication is related to oxime-induced reactivation. Topics: Acetylcholinesterase; Animals; Atropine; Erythrocytes; Guinea Pigs; Male; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Pyridostigmine Bromide | 1987 |
Reactivation of Sarin- or Soman-phosphonylated human acetylcholinesterase by bis-pyridinium mono-oximes.
Topics: Acetylcholinesterase; Animals; Brain; Cholinesterase Reactivators; Erythrocytes; Humans; Muscles; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Sarin; Soman | 1986 |
Effects of HI-6 and pralidoxime on neuronal RNA in thalamic cholinergic sites.
Quantitative azure B-RNA cytophotometry was employed to compare effects of the oximes HI-6 and pralidoxime (2-PAM) to those of atropine sulfate (AS) on neuronal RNA metabolism in the thalamic ventrobasal nuclear complex (VBC) and nucleus reticularis (NR). The ability of these compounds to mitigate soman (pinacolyl methylphosphonofluoridate)-induced neuronal RNA alterations (i.e., VBC-RNA depletion/NR-RNA elevation) in these muscarinic cholinergic sites was also determined. Generally, HI-6 (125 mg/kg, i.p.) and 2-PAM (43.2 mg/kg, i.m.) elicited similar patterns of neuronal RNA changes, i.e., diminution of VBC-RNA and NR-RNA with oximes alone; partial amelioration of soman (1.5 LD50, s.c.)-induced VBC-RNA loss; and slight or no effect on soman induced NR-RNA accumulation. HI-6 produced more severe RNA reduction than 2-PAM in both brain regions of non-poisoned rats, whereas 2-PAM was more effective in reversing the effects of soman in these two regions. The muscarinic antagonist, AS, also produced VBC-RNA depletion and partially counteracted the VBC-RNA loss in soman intoxicated rats. Unlike the oximes, however, AS resulted in NR-RNA accumulation and it also antagonized soman induced NR-RNA elevation. Neither oxime reactivated soman inhibited brain acetylcholinesterase but HI-6 did reactivate appreciable plasma cholinesterase. The overall data suggest that HI-6 and 2-PAM do exert pharmacologic actions on cholinergic neurons in the rat CNS. However, the greater effectiveness of HI-6 over 2-PAM in countering lethal actions of soman does not appear to be correlated with oxime mediated restoration of neuronal RNA levels in these two cholinergic regions.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Antidotes; Cholinesterase Reactivators; Cholinesterases; Corpus Striatum; Male; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Inbred Strains; RNA; Soman; Thalamic Nuclei | 1985 |
Reactivation of ethyl methylphosphonylated eel acetylcholinesterase in vitro by 2PAM, H16, and a series of nonquaternary alpha-ketothiohydroximates.
Topics: Acetylcholinesterase; Animals; Cholinesterase Inhibitors; Cholinesterase Reactivators; Eels; Hydroxamic Acids; Kinetics; Oximes; Pralidoxime Compounds; Pyridinium Compounds | 1985 |
Carbamylated acetylcholinesterase: acceleration of decarbamylation by bispyridinium oximes.
Topics: Acetylcholinesterase; Animals; Brain; Carbamates; Cattle; Erythrocytes; Humans; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rabbits; Trimedoxime | 1985 |
Effect of PAM-2 Cl, HI-6, and HGG-12 in poisoning by tabun and its thiocholine-like analog in the rat.
It has been shown that HI-6 was the most potent oxime so far known in poisoning by sarin, VX , and soman, but its protective effect in tabun poisoning, allegedly due to poor reactivation of inhibited ChE, was much less pronounced. We have found that the thiocholine-like analog of tabun , O-ethyl, N-N- dimethyamino -S-(2-diethylaminoethyl)- thiophosphatemethylsul fomethylate (Ta-S-N+), was very useful in resolving this problem and established the relationship between reactivating and protective effects of PAM-2 Cl, HI-6, and HGG-12 in rats. PAM-2 Cl (protective ratio (PR) = 22.1) and HI-6 (PR = 24.8), combined with atropine, were very effective against Ta-S-N+ poisoning and reactivating inhibited RBC AChE in vitro and rat blood ChE in vivo. The inefficiency of PAM-2 Cl (PR = 1.6) and HI-6 (PR = 2) in tabun poisoning was due to their inadequacy to reactive tabun -inhibited ChEs . The protective effects of HGG-12 in tabun (PR = 2.8) and Ta-S-N+ poisoning (PR = 2.6) were low, and in the absence of any reactivation of inhibited ChEs , have been attributed to its direct pharmacological effects, which were much more potent in the comparison with PAM-2 Cl or HI-6. It is concluded that the reactivation of inhibited ChE is of decisive importance in the efficient protection in poisoning by tabun and other known chemical warfare nerve agents, whereas their direct pharmacological effects are of limited value, allowing survival of animals only against a few LD50s . Topics: Animals; Atropine; Choline; Cholinesterase Reactivators; Cholinesterases; Female; Guinea Pigs; Heart; Humans; Lethal Dose 50; Male; Muscle Contraction; Muscle, Smooth; Organophosphate Poisoning; Organophosphates; Oximes; Phrenic Nerve; Pralidoxime Compounds; Pyridinium Compounds; Rats; Thiocholine | 1984 |
PAM-2 Cl, HI-6, and HGG-12 in soman and tabun poisoning.
Acute sc toxicity of soman increased in the order, mice----rats----guinea pigs----dogs, being 12.6 times more toxic to dogs (LD50 = 0.05 mumol/kg) than to mice. It was 2.8 times more toxic than tabun to mice and 35 times more toxic to dogs. HI-6 was the least toxic and had similar toxicity values to the four animal species studied and HGG-12 the most toxic of the three oximes used. HGG-12 has shown the greatest interspecies variation (rats:dogs = 1:19.5). HI-6, HGG-12, and PAM-2 Cl (in conjunction with atropine and diazepam) revealed the best protective effect in soman-poisoned dogs, with the respective protective indices of 9, 6.3, and 3.5, followed by guinea pigs. In tabun poisoning the best, but relatively low, protective effect was found only in guinea pigs. The introduction of diazepam increased the protective effects of atropine-oxime combination in soman and tabun poisoning by 10 to 80%. We suggest that the high toxicity of soman and low toxicity of HI-6 may be anticipated in man. The inefficiency of HI-6, HGG-12, and PAM-2 Cl in tabun poisoning points either to the search of new compounds or to the use of the mixture of the oximes found to be effective against the known chemical warfare nerve agents. Topics: Acetylcholinesterase; Animals; Antidotes; Atropine; Cholinesterase Inhibitors; Cholinesterase Reactivators; Diazepam; Dogs; Guinea Pigs; Lethal Dose 50; Male; Mice; Organophosphate Poisoning; Organophosphates; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Soman; Species Specificity | 1984 |