potassium-permanganate and 2-methylisoborneol

potassium-permanganate has been researched along with 2-methylisoborneol* in 3 studies

Other Studies

3 other study(ies) available for potassium-permanganate and 2-methylisoborneol

ArticleYear
A Simple Alternative Method for Preservation of 2-Methylisoborneol in Water Samples.
    International journal of environmental research and public health, 2018, 05-18, Volume: 15, Issue:5

    2-Methylisoborneol (2-MIB) is one of the most commonly observed taste and odor (T&O) compounds present in drinking water sources. As it is biodegradable, a preservation agent, typically mercury chloride, is needed if the water is not analyzed right after sampling. Since mercury is a toxic metal, an alternative chemical that is cheaper and less toxic is desirable. In this study, two chemicals commonly used in water treatment processes, chlorine (as sodium hypochlorite) and KMnO₄ (potassium permanganate), are studied to determine their feasibility as preservation agents for 2-MIB in water. Preservation experiments were first conducted in deionized water spiked with 2-MIB and with chlorine or permanganate at 4 and 25 °C. The results indicate that 2-MIB concentrations in the water samples spiked with both chemicals remained almost constant within 14 days for all the tested conditions, suggesting that oxidation and volatilization did not cause the loss of 2-MIB in the system. The experiments were further conducted for three different reservoir water samples with 30⁻60 ng/L of indulgent 2-MIB. The experimental results demonstrated that preservation with permanganate may have underestimated the 2-MIB concentration in the samples as a result of the formation of manganese dioxide particles in natural water and adsorption of 2-MIB onto the particles. Chlorine was demonstrated to be a good preservation agent for all three tested natural waters since oxidation of 2-MIB was negligible and biodegradation was inhibited. When the residual chlorine concentrations were controlled to be higher than 0.5 mg/L on the final day (day 14) of the experiments, the concentration reduction of 2-MIB became lower than 13% at both of the tested temperatures. The results demonstrated that sodium hypochlorite can be used as an alternative preservation agent for 2-MIB in water before analysis.

    Topics: Adsorption; Biodegradation, Environmental; Camphanes; Chlorine; Manganese Compounds; Oxidation-Reduction; Oxides; Potassium Permanganate; Volatilization; Water Pollutants, Chemical

2018
Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water.
    Journal of environmental sciences (China), 2006, Volume: 18, Issue:1

    Removal of 2-methylisoborneol (MIB) in drinking water by ozone, powdered activated carbon (PAC), potassium permanganate and potassium ferrate was investigated. The adsorption kinetics of MIB by both wood-based and coat-based PACs show that main removal of MIB occurs within contact time of 1 h. Compared with the wood-based PAC, the coat-based PAC evidently improved the removal efficiency of MIB. The removal percentage of trace MIB at any given time for a particular carbon dosage was irrelative to the initial concentration of MIB. A series of experiments were performed to determine the effect of pH on the ozonation of MIB. The results show that pH has a significant effect on the ozonation of MIB. It is conclusive that potassium permanganate and potassium ferrate are ineffective in removing the MIB in drinking water.

    Topics: Adsorption; Camphanes; Hydrogen-Ion Concentration; Iron Compounds; Kinetics; Oxidation-Reduction; Ozone; Potassium Compounds; Potassium Permanganate; Water Supply

2006
The effect of oxidants on 2-MIB concentration with the presence of cyanobacteria.
    Water science and technology : a journal of the International Association on Water Pollution Research, 2004, Volume: 49, Issue:9

    In this study, the effect of three oxidants, sodium hypochlorite, potassium permanganate, and ozone, were tested for the removal of 2-MIB with presence of cyanobacteria. Algae in water samples from the source water of Feng-Shen waterworks (FSW), Taiwan were cultivated at 30 degrees C with continuous light at an intensity between 2,500 and 3,400 lux. During the cultivating process, water samples were analyzed for nutrients, light absorbance at 665 nm (A665), and 2-MIB concentration. The 2-MIB concentrations within the incubated samples increased to as high as 1,000 ng/L to 2,000 ng/L, although no extra nutrients were added to the raw water. After 2 to 3 days incubation, the intracellular 2-MIB concentration was as high as 70% of the total 2-MIB in the samples. The algae that developed were mainly cyanobateria, and more than 90% belonged to the Genus Oscillatorias. An almost 100% removal of both 2-MIB and geosmin in the raw water was observed after ozonation for 10 minutes at a dosing rate of 0.91 mg/l-min. Chlorine and permanganate were much less effective, both removing only about 11% of the 2-MIB within 60 minutes at oxidant concentration of 10 mg/l. Oxidation of the cultivated samples showed that chlorine and permanganate may damage algae cells causing them to release intracellular 2-MIB. During the 60 minutes of reaction time, the total 2-MIB concentrations (intracellular plus dissolved) varied by no more than 10%, however, the ratios between dissolved and total 2-MIB concentrations increased. Two effects of ozonation on the 2-MIB concentration in the cultivated samples were observed when the algae were young, namely 2-MIB release from damaged cells and 2-MIB oxidization. The rates of 2-MIB release and 2-MIB destruction were similar. However, old algae cells were more easily damaged. As a result, intracellular 2-MIB was released faster, and the soluble 2-MIB was destroyed more quickly by ozonation.

    Topics: Camphanes; Cyanobacteria; Oxidants; Oxidants, Photochemical; Oxidation-Reduction; Ozone; Potassium Permanganate; Sodium Hypochlorite; Water Purification

2004