potassium-fluoride and sodium-sulfate

potassium-fluoride has been researched along with sodium-sulfate* in 2 studies

Other Studies

2 other study(ies) available for potassium-fluoride and sodium-sulfate

ArticleYear
Perturbation of thermal unfolding and aggregation of human IgG1 Fc fragment by Hofmeister anions.
    Molecular pharmaceutics, 2013, Feb-04, Volume: 10, Issue:2

    The thermal unfolding and subsequent aggregation of the unglycosylated Fc fragment of a human IgG1 antibody (Fc) were studied in the salt solutions of Na(2)SO(4), KF, KCl and KSCN at pH 4.8 and 7.2 below and at its pI of 7.2, respectively, using differential scanning calorimetry (DSC), far ultraviolet circular dichroism (far-UV CD), size exclusion chromatography (SE-HPLC) and light scattering. First, our experimental results demonstrated that the thermal unfolding of the C(H)2 domain of the Fc was sufficient to induce aggregation. Second, at both pH conditions, the anions (except F(-)) destabilized the C(H)2 domain where the effectiveness of SO(4)(2-) > SCN(-) > Cl(-) > F(-) was more apparent at pH 4.8. In addition, the thermal stability of the C(H)2 domain was less sensitive to the change in salt concentration at pH 7.2 than at pH 4.8. Third, at pH 4.8 when the Fc had a net positive charge, the anions accelerated the aggregation reaction with SO(4)(2-) > SCN(-) > Cl(-) > F(-) in effectiveness. But these anions slowed down the aggregation kinetics at pH 7.2 with similar effectiveness when the Fc was net charge neutral. We hypothesize that the effectiveness of the anion on destabilizing the C(H)2 domain could be attributed to its ability to perturb the free energy for both of the native and unfolded states. The effect of the anions on the kinetics of the aggregation reaction could be interpreted based on the modulation of the electrostatic protein-protein interactions by the anions.

    Topics: Anions; Calorimetry, Differential Scanning; Chromatography, Gel; Chromatography, High Pressure Liquid; Circular Dichroism; Fluorides; Humans; Hydrogen-Ion Concentration; Immunoglobulin Fc Fragments; Immunoglobulin G; Potassium Chloride; Potassium Compounds; Protein Binding; Protein Folding; Sulfates; Thiocyanates

2013
Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase.
    Journal of biochemistry, 2005, Volume: 137, Issue:3

    The effects of salts on the rate constants of inactivation by heat of yeast alcohol dehydrogenase (YADH) at 60.0 degrees C were measured. Different effects were observed at low and high salt concentrations. At high concentrations, some salts had stabilizing effects, while others were destabilizing. The effects of salts in the high concentration range examined can be described as follows: (decreased thermal stability) NaClO(4) < NaI = (C(2)H(5))(4)NBr < NH(4)Br < NaBr = KBr = CsBr = (no addition) < (CH(3))(4)NBr < KCl < KF < Na(2)SO(4) (increased thermal stability). The decreasing effect of NaClO(4) on YADH controlled the thermal stability of the enzyme absolutely and was not compensated by the addition of Na(2)SO(4), a salt which stabilized the enzyme. However, Na(2)SO(4) compensation did occur in response to the decrease in thermal stability caused by (C(2)H(5))(4)NBr. The rate constants of inactivation by heat (k (in)) of the enzyme were measured at various temperatures. Effective values of the thermodynamic activation parameters of thermal inactivation, activation of free energy (DeltaG (double dagger)), activation enthalpy (DeltaH (double dagger)), and activation entropy (DeltaS (double dagger)), were determined. The thermal stability of YADH in 0.8 M Na(2)SO(4) increased more than that of pyruvate kinase from Bacillus stearothermophilus, a moderate thermophile. The changes in the values of DeltaH (double dagger) and DeltaS (double dagger) were great and showed a general compensatory tendency, with the exception of in the case of NaClO(4). The temperature for the general compensation effect (T (c)) was approximately 123 degrees C. With Na(2)SO(4), the thermal stability of YADH at a temperature below T (c) was greater than that in the absence of salt due to the higher values of DeltaH (double dagger) and DeltaS (double dagger), respectively, and thus was an example of low-temperature enzymatic stabilization. With (C(2)H(5))(4)NBr, the thermal stability of YADH at a temperature below T (c) was lower than that in the absence of salt due to the lower values of DeltaH (double dagger) and DeltaS (double dagger), respectively, and thus was an example of low-temperature enzymatic destabilization. But with NaClO(4), the changes in the values of DeltaH (double dagger) and DeltaS (double dagger) were small and the thermal stability of YADH was thus an example of high-temperature enzymatic destabilization.

    Topics: Alcohol Dehydrogenase; Cations, Monovalent; Entropy; Enzyme Stability; Fluorides; Hot Temperature; Kinetics; Perchlorates; Potassium Compounds; Saccharomyces cerevisiae; Sodium Compounds; Sodium Iodide; Sulfates; Thermodynamics

2005