potassium-cyanate and antimycin

potassium-cyanate has been researched along with antimycin* in 3 studies

Other Studies

3 other study(ies) available for potassium-cyanate and antimycin

ArticleYear
Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus.
    Journal of plant physiology, 2010, Jul-15, Volume: 167, Issue:11

    Hyoscyamus albus hairy roots secrete riboflavin under Fe-deficient conditions. To determine whether this secretion was linked to an enhancement of respiration, both riboflavin secretion and the reduction of 2,3,5-triphenyltetrazolium chloride (TTC), as a measure of respiration activity, were determined in hairy roots cultured under Fe-deficient and Fe-replete conditions, with or without aeration. Appreciable TTC-reducing activity was detected at the root tips, at the bases of lateral roots and in internal tissues, notably the vascular system. TTC-reducing activity increased under Fe deficiency and this increase occurred in concert with riboflavin secretion and was more apparent under aeration. Riboflavin secretion was not apparent under Fe-replete conditions. In order to examine which elements of the mitochondrial electron transport chain might be involved, the effects of the respiratory inhibitors, barbiturate, dicoumarol, malonic acid, antimycin, KCN and salicylhydroxamic acid (SHAM) were investigated. Under Fe-deficient conditions, malonic acid affected neither root growth, TTC-reducing activity nor riboflavin secretion, whereas barbiturate and SHAM inhibited only root growth and TTC-reducing activity, respectively, and the other compounds variously inhibited growth and TTC-reducing activity. Riboflavin secretion was decreased, in concert with TTC-reducing activity, by dicoumarol, antimycin and KCN, but not by SHAM. In Fe-replete roots, all inhibitors which reduced riboflavin secretion in Fe-deficient roots showed somewhat different effects: notably, antimycin and KCN did not significantly inhibit TTC-reducing activity and the inhibition by dicoumarol was much weaker in Fe-replete roots. Combined treatment with KCN and SHAM also revealed that Fe-deficient and Fe-replete roots reduced TTC in different ways. A decrease in the Fe content of mitochondria in Fe-deficient roots was confirmed. Overall, the results suggest that, under conditions of Fe deficiency in H. albus hairy roots, the alternative NAD(P)H dehydrogenases, complex III and complex IV, but not the alternative oxidase, are actively involved both in respiration and in riboflavin secretion.

    Topics: Antimycin A; Barbiturates; Cyanates; Dicumarol; Electron Transport; Hyoscyamus; Iron Deficiencies; Malonates; Plant Roots; Riboflavin; Salicylamides

2010
Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III.
    The Journal of biological chemistry, 2001, Jun-01, Volume: 276, Issue:22

    Two sets of studies have been reported on the electron transfer pathway of complex III in bovine heart submitochondrial particles (SMP). 1) In the presence of myxothiazol, MOA-stilbene, stigmatellin, or of antimycin added to SMP pretreated with ascorbate and KCN to reduce the high potential components (iron-sulfur protein (ISP) and cytochrome c(1)) of complex III, addition of succinate reduced heme b(H) followed by a slow and partial reduction of heme b(L). Similar results were obtained when SMP were treated only with KCN or NaN(3), reagents that inhibit cytochrome oxidase, not complex III. The average initial rate of b(H) reduction under these conditions was about 25-30% of the rate of b reduction by succinate in antimycin-treated SMP, where both b(H) and b(L) were concomitantly reduced. These results have been discussed in relation to the Q-cycle hypothesis and the effect of the redox state of ISP/c(1) on cytochrome b reduction by succinate. 2) Reverse electron transfer from ISP reduced with ascorbate plus phenazine methosulfate to cytochrome b was studied in SMP, ubiquinone (Q)-depleted SMP containing

    Topics: Animals; Anti-Bacterial Agents; Antimycin A; Ascorbic Acid; Cattle; Cyanates; Cytochrome b Group; Cytochrome c Group; Electron Transport Complex III; Electrons; Enzyme Inhibitors; Heme; Methylphenazonium Methosulfate; Mitochondria; Models, Biological; Myocardium; Oxidation-Reduction; Succinic Acid; Time Factors; Ubiquinone

2001
Effect of various agents and conditions on palmitate oxidation by homogenates of rat liver and rat and human skeletal muscle.
    The International journal of biochemistry, 1985, Volume: 17, Issue:11

    The effect of various inhibitors of fatty acid transport and of respiratory chain on palmitate oxidation was investigated in homogenates and mitochondria of rat muscle and homogenates of rat liver and human muscle. Inhibition of fatty acid transport by carnitine omission, malonyl-CoA, tetradecylglycidic acid and mersalyl decreased oxidation more with muscle than with rat liver. Antimycin and KCN decreased markedly palmitate oxidation and caused a larger accumulation of peroxisomal oxidation products. Inhibition of mitochondrial long-chain fatty acid transport decreased accumulation of peroxisomal products in comparison to the control. The effect of malonyl-CoA was dependent on the nutritional state, the pH and the palmitate-albumin ratio with liver homogenates, and only on the latter parameter with muscle homogenates. Effects observed were comparable for rat and human muscle homogenates.

    Topics: Animals; Antimycin A; Betaine; Carbon Radioisotopes; Carnitine; Clofibric Acid; Cyanates; Fatty Acids; Humans; Liver; Malonyl Coenzyme A; Mitochondria, Liver; Mitochondria, Muscle; Muscles; Oxidation-Reduction; Palmitic Acid; Palmitic Acids; Rats

1985