polygalacturonic-acid and serinol

polygalacturonic-acid has been researched along with serinol* in 1 studies

Other Studies

1 other study(ies) available for polygalacturonic-acid and serinol

ArticleYear
Structures of a unique O-polysaccharide of Edwardsiella tarda PCM 1153 containing an amide of galacturonic acid with 2-aminopropane-1,3-diol and an abequose-containing O-polysaccharide shared by E. tarda PCM 1145, PCM 1151 and PCM 1158.
    Carbohydrate research, 2012, Jul-01, Volume: 355

    Lipopolysaccharides of four strains of Edwardsiella tarda were degraded by mild acid hydrolysis, and the released O-polysaccharides were isolated by GPC and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H, (1)H COSY, TOCSY, ROESY, (1)H, (13)C HMBC, HSQC and HSQC-TOCSY experiments. The O-polysaccharide from E. tarda PCM 1153 was found to contain D-GalA, D-GlcNAc, D-Gal and 2-amino-1,3-propanediol (GroN). In the tetrasaccharide repeating unit, GroN is amide-linked to one of the GalA residues, and Gal is non-stoichiometrically 2- or 3-O-acetylated (~45% at each position): [structure: see text]. Three other E. tarda strains examined (PCM 1145, PCM 1151 and PCM 1158) share the following O-polysaccharide structure: [structure: see text] where Abe indicates 3,6-dideoxy-D-xylo-hexose (abequose). This structure resembles those of Citrobacter freundii O22 (PCM 1555) and Salmonella enterica O4. In accordance with the structural data, SDS-PAGE and immunoblotting of the lipopolysaccharides with anti-C. freundii O22 serum demonstrated that the O-antigens of the three E. tarda strains are serologically identical to each other and to the O-antigens of C. freundii O22 and S. enterica O4.

    Topics: Amides; Carbohydrate Conformation; Edwardsiella tarda; Hexoses; Hexuronic Acids; Hydrolysis; Nuclear Magnetic Resonance, Biomolecular; O Antigens; Propanolamines; Propylene Glycols; Species Specificity

2012