polygalacturonic-acid and dichlobanil

polygalacturonic-acid has been researched along with dichlobanil* in 1 studies

Other Studies

1 other study(ies) available for polygalacturonic-acid and dichlobanil

ArticleYear
Ultrastructural effects of cellulose biosynthesis inhibitor herbicides on developing cotton fibers.
    Protoplasma, 2001, Volume: 216, Issue:1-2

    Cotton fibers are often utilized as a model system to investigate cellulose biosynthesis and cell wall elongation. In this study, we grew cotton fibers in vitro, with ovules dissected at day zero post anthesis as the explant source, in the presence of three herbicides that inhibit cellulose biosynthesis. Cultures were sampled for electron microscopy and immunocytochemistry 1-2 days after beginning the treatments. After dichlobenil treatment, the fibers were much shorter than the controls and assumed a variety of abnormal shapes, from shortened versions of the control fiber to nearly spherical. The inner layers of the fiber wall often contained juxtaposed electron-translucent and -transparent areas; this layer reacted strongly with antibodies to callose. Cellulase-gold labeling in these newly developed fibers grown in the presence of dichlobenil was present at only about 3% of the control labeling. After treatment with either isoxaben or flupoxam, the fibers assumed spherical shapes and frequently (more than 60% of fibers) exhibited a new cell plate within the fiber, indicating that cell division had occurred, a process that rarely occurred in the controls. Unlike the dichlobenil-treated fibers, fibers grown in the presence of isoxaben or flupoxam contained an extensive accumulation of chiefly deesterified pectins, replacing the entire wall with an elaborated version of the pectin sheath found in control cotton fibers. These data indicate that all three herbicides are effective disrupters of cellulose biosynthesis and cause radical changes in cell wall structure and composition. Moreover, these data indicate that the composition of the walls may influence indirectly cell cycle kinetics, keeping these fiber cells in a more meristematic mode.

    Topics: Benzamides; Cell Division; Cell Wall; Cellulose; Gossypium; Herbicides; Hexuronic Acids; Immunohistochemistry; Nitriles

2001