pnu-120596 has been researched along with epibatidine* in 3 studies
3 other study(ies) available for pnu-120596 and epibatidine
Article | Year |
---|---|
Quantitative assessment of oligomeric amyloid β peptide binding to α7 nicotinic receptor.
Progressive dysfunction of cholinergic transmission is a well-known characteristic of Alzheimer's disease (AD). Amyloid β (Aβ) peptide oligomers are known to play a central role in AD and are suggested to impair the function of the cholinergic nicotinic ACh receptor α7 (α7nAChR). However, the mechanism underlying the effect of Aβ on α7nAChR function is not fully understood, limiting the therapeutic exploration of this observation in AD. Here, we aimed to detect and characterize Aβ binding to α7nAChR, including the possibility of interfering with this interaction for therapeutic purposes.. We developed a specific and quantitative time-resolved FRET (TR-FRET)-based binding assay for Aβ to α7nAChR and pharmacologically characterized this interaction.. We demonstrated specific and high-affinity (low nanomolar) binding of Aβ to the orthosteric binding site of α7nAChR. Aβ binding was prevented and reversed by the well-characterized orthosteric ligands of α7nAChR (epibatidine, α-bungarotoxin, methylylcaconitine, PNU-282987, S24795, and EVP6124) and by the type II positive allosteric modulator (PAM) PNU-120596 but not by the type I PAM NS1738.. Our TR-FRET Aβ binding assay demonstrates for the first time the specific binding of Aβ to α7nAChR, which will be a crucial tool for the development, testing, and selection of a novel generation of AD drug candidates targeting Aβ/α7nAChR complexes with high specificity and fewer side effects compared to currently approved α7nAChR drugs.. This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc. Topics: Aconitine; alpha7 Nicotinic Acetylcholine Receptor; Amyloid beta-Peptides; Benzamides; Bridged Bicyclo Compounds; Bridged Bicyclo Compounds, Heterocyclic; Bungarotoxins; HEK293 Cells; Humans; Isoxazoles; Ligands; Phenylurea Compounds; Pyridines; Pyridinium Compounds; Quinuclidines; Thiophenes | 2019 |
Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in ganglia of the autonomic nervous system. Here, we determined the subunit composition of hetero-pentameric nAChRs in the mouse superior cervical ganglion (SCG), the function of distinct receptors (obtained by deletions of nAChR subunit genes) and mechanisms at the level of nAChRs that might compensate for the loss of subunits. As shown by immunoprecipitation and Western blots, wild-type (WT) mice expressed: alpha 3 beta 4 (55%), alpha 3 beta 4 alpha 5 (24%) and alpha 3 beta 4 beta 2 (21%) nAChRs. nAChRs in beta 4 knockout (KO) mice were reduced to < 15% of controls and no longer contained the alpha 5 subunit. Compound action potentials, recorded from the postganglionic (internal carotid) nerve and induced by preganglionic nerve stimulation, did not differ between alpha 5 beta 4 KO and WT mice, suggesting that the reduced number of receptors in the KO mice did not impair transganglionic transmission. Deletions of alpha 5 or beta2 did not affect the overall number of receptors and we found no evidence that the two subunits substitute for each other. In addition, dual KOs allowed us to study the functional properties of distinct alpha 3 beta4 and alpha 3 beta 2 receptors that have previously only been investigated in heterologous expression systems. The two receptors strikingly differed in the decay of macroscopic currents, the efficacy of cytisine, and their responses to the alpha-conotoxins AuIB and MII. Our data, based on biochemical and functional experiments and several mouse KO models, clarify and significantly extend previous observations on the function of nAChRs in heterologous systems and the SCG. Topics: Analysis of Variance; Animals; Animals, Newborn; Bridged Bicyclo Compounds, Heterocyclic; Cell Membrane; Cells, Cultured; Cholinergic Agents; Dose-Response Relationship, Drug; Female; Humans; Immunoprecipitation; Isoxazoles; Male; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Nicotinic Agonists; Oocytes; Patch-Clamp Techniques; Phenylurea Compounds; Protein Binding; Protein Subunits; Pyridines; Receptors, Nicotinic; Sodium Channel Blockers; Statistics, Nonparametric; Superior Cervical Ganglion; Tetrodotoxin; Tritium; Xenopus | 2010 |
Alpha-conotoxin Arenatus IB[V11L,V16D] [corrected] is a potent and selective antagonist at rat and human native alpha7 nicotinic acetylcholine receptors.
A recently developed alpha-conotoxin, alpha-conotoxin Arenatus IB-[V11L,V16D] (alpha-CtxArIB[V11L,V16D]) [corrected], is a potent and selective competitive antagonist at rat recombinant alpha7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. alpha7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues, where they are implicated in a variety of functions. In this study, we evaluate this toxin at rat and human native nAChRs. Functional alpha7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea] in rat PC12 cells and human SH-SY5Y cells loaded with calcium indicators. alpha-CtxArIB[V11L,V16D] specifically inhibited alpha7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli, 5-I-A-85380 [5-iodo-3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride], nicotine, or KCl, that did not activate alpha7 nAChRs were unaffected. Human alpha7 nAChRs were also sensitive to alpha-CtxArIB[V11L, V16D]; acetylcholine-evoked currents in Xenopus laevis oocytes expressing human alpha7 nAChRs were inhibited by alpha-CtxArIB[V11L,V16D] (IC(50), 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the time course of recovery from blockade of rat alpha7 nAChRs in PC12 cells. alpha-CtxArIB[V11L,V16D] inhibited human native alpha7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 [(2)-spiro[1-azabicyclo[2.2.2]octane-3,59-oxazolidin]-29-one] plus PNU-120596. Rat brain alpha7 nAChRs contribute to dopamine release from striatal minces; alpha-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that alpha-CtxArIB[V11L,V16D] selectively inhibits human and rat native alpha7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating alpha7 nAChR functions. Topics: alpha7 Nicotinic Acetylcholine Receptor; Animals; Bridged Bicyclo Compounds, Heterocyclic; Bridged-Ring Compounds; Calcium; Choline; Conotoxins; Dopamine; Humans; Isoxazoles; Male; Nicotinic Antagonists; PC12 Cells; Phenylurea Compounds; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Spiro Compounds | 2008 |