pnu-120596 has been researched along with 5-hydroxyindole* in 2 studies
2 other study(ies) available for pnu-120596 and 5-hydroxyindole
Article | Year |
---|---|
Positive modulation of alpha7 nAChR responses in rat hippocampal interneurons to full agonists and the alpha7-selective partial agonists, 4OH-GTS-21 and S 24795.
One approach for the identification of therapeutic agents for Alzheimer's disease has focused on the research of alpha7 nAChR-selective agonists such as the partial agonists 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) and, more recently, 2-[2-(4-bromophenyl)-2-oxoethyl]-1-methyl pyridinium (S 24795). An alternative approach for targeting alpha7 nAChR has been the development of positive modulators for this receptor. In this study we examined the interactions between full or partial agonists and positive modulators of alpha7 nAChRs in situ in brain tissue. Three positive modulators were used, 5-hydroxyindole (5-HI), 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), and genistein. Whole-cell recordings were performed in stratum radiatum interneurons from rat brain slices. Hippocampal interneurons were stimulated by ACh, choline, S 24795, or 4OH-GTS-21, before and after bath perfusion with the positive modulators. 5-HI was not effective at potentiating 200 microM 4OH-GTS-21-evoked responses, however 5-HI induced a sustained potentiation of responses evoked by 30 microM 4OH-GTS-21. When 1 mM ACh and 200 microM 4OH-GTS-21 were applied alternately alpha7-mediated responses to both agonists were reduced, suggesting that high concentration of 4OH-GTS-21 produces residual inhibition or desensitization and that 5-HI is not effective at overcoming receptor desensitization. Similar results were obtained with alpha7 receptors expressed in Xenopus oocytes. Interestingly, responses evoked by S 24795 were potentiated by 5-HI but not by genistein. Additionally, PNU-120596 was able to potentiate alpha7-mediated responses, regardless of the nature of the agonist. We demonstrated that the potentiation of alpha7 nAChR response would depend on the nature and the effective concentration of the agonist involved and its particular interaction with the positive modulator. Topics: Adrenergic alpha-Agonists; alpha7 Nicotinic Acetylcholine Receptor; Anabasine; Animals; Cloning, Molecular; DNA, Complementary; Evoked Potentials; Hippocampus; Indoles; Interneurons; Isoxazoles; Nicotinic Agonists; Oocytes; Patch-Clamp Techniques; Phenylurea Compounds; Pyridinium Compounds; Rats; Receptors, Nicotinic; Synaptic Transmission; Xenopus laevis | 2009 |
Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes.
Selective modulation of alpha7 nicotinic acetylcholine receptors (nAChRs) is thought to regulate processes impaired in schizophrenia, Alzheimer's disease, and other dementias. One approach to target alpha7 nAChRs is by positive allosteric modulation. Structurally diverse compounds, including PNU-120596, 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS), and 5-hydroxyindole (5-HI) have been identified as positive allosteric modulators (PAMs), but their receptor interactions and pharmacological profiles remain to be fully elucidated. In this study, we investigated interactions of these compounds at human alpha7 nAChRs, expressed in Xenopus laevis oocytes, along with genistein, a tyrosine kinase inhibitor. Genistein was found to function as a PAM. Two types of PAM profiles were observed. 5-HI and genistein predominantly affected the apparent peak current (type I) whereas PNU-120596 and TQS increased the apparent peak current and evoked a distinct weakly decaying current (type II). Concentration-responses to agonists [ACh, 3-[(3E)-3-[(2,4-dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-yl]pyridine dihydrochloride (GTS-21), and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)] were potentiated by both types, although type II PAMs had greater effects. When applied after alpha7 nAChRs were desensitized, type II, but not type I, PAMs could reactivate alpha7 currents. Both types of PAMs also increased the ACh-evoked alpha7 window currents, with type II PAMs generally showing larger potentiation. None of the PAMs tested increased nicotine-evoked Ca(2+) transients in human embryonic kidney 293 cells expressing human alpha4beta2 or alpha3beta4 nAChRs, although some inhibition was noted for 5-HI, genistein, and TQS. In summary, our studies reveal two distinct alpha7 PAM profiles, which could offer unique opportunities for modulating alpha7 nAChRs in vivo and in the development of novel therapeutics for central nervous system indications. Topics: Acetylcholine; Allosteric Regulation; alpha7 Nicotinic Acetylcholine Receptor; Animals; Benzamides; Benzylidene Compounds; Bridged Bicyclo Compounds; Calcium; Cell Line; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Genistein; Humans; Indoles; Isoxazoles; Kidney; Microinjections; Naphthalenes; Nicotine; Nicotinic Antagonists; Oocytes; Patch-Clamp Techniques; Phenylurea Compounds; Protein-Tyrosine Kinases; Pyridines; Quinolines; Receptors, Cholinergic; Receptors, Nicotinic; Sensitivity and Specificity; Sulfonamides; Xenopus laevis | 2007 |