pki-166 has been researched along with vatalanib* in 2 studies
2 other study(ies) available for pki-166 and vatalanib
Article | Year |
---|---|
Novel radiosensitizers for locally advanced epithelial tumors: inhibition of the PI3K/Akt survival pathway in tumor cells and in tumor-associated endothelial cells as a novel treatment strategy?
In locally advanced epithelial malignancies, local control can be achieved with high doses of radiotherapy (RT). Concurrent chemoradiotherapy can improve tumor control in selected solid epithelial adult tumors; however, treatment-related toxicity is of major concern and the therapeutic window often small. Therefore, novel pharmacologic radiosensitizers with a tumor-specific molecular target and a broad therapeutic window are attractive. Because of clonal heterogeneity and the high mutation rate of these tumors, combined treatment with single molecular target radiosensitizers and RT are unlikely to improve sustained local tumor control substantially. Therefore, radiosensitizers modulating entire tumor cell survival pathways in epithelial tumors are of potential clinical use. We discuss the preclinical efficacy and the mechanism of three different, potential radiosensitizers targeting the PTEN/PI3K/Akt survival pathway. These compounds were initially thought to act as single-target agents against growth factor receptors (PKI 166 and PTK 787) or protein kinase C isoforms (PKC 412). We describe an additional target for these compounds. PKI 166 (an epidermal growth factor [EGF] receptor inhibitor) and PKC 412, target the PTEN/PI3K/Akt pathway mainly in tumor cells, and PTK 787 (a vascular endothelial growth factor [VEGF] receptor inhibitor) in endothelial cells. Even for these broader range molecular radiosensitizers, the benefit could be restricted to human epithelial tumor cell clones with a distinct molecular profile. Therefore, these potential radiosensitizers have to be carefully tested in specific model systems before introduction in early clinical trials. Topics: Cell Survival; Combined Modality Therapy; Down-Regulation; Endothelial Cells; Enzyme Inhibitors; ErbB Receptors; Neoplasm Proteins; Neoplasms, Glandular and Epithelial; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phthalazines; Protein Kinase C; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; Pyrroles; Radiation-Sensitizing Agents; Receptors, Vascular Endothelial Growth Factor; Staurosporine | 2004 |
Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.
We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer. Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Division; Deoxycytidine; Endothelium, Vascular; ErbB Receptors; Gemcitabine; Humans; Immunohistochemistry; Male; Mice; Mice, Nude; Neoplasm Metastasis; Neovascularization, Pathologic; Pancreatic Neoplasms; Phthalazines; Pyridines; Pyrimidines; Pyrroles; Receptor Protein-Tyrosine Kinases; Receptors, Growth Factor; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Xenograft Model Antitumor Assays | 2002 |