pituitrin and ursodoxicoltaurine

pituitrin has been researched along with ursodoxicoltaurine* in 2 studies

Other Studies

2 other study(ies) available for pituitrin and ursodoxicoltaurine

ArticleYear
Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis.
    The Journal of clinical investigation, 1993, Volume: 92, Issue:6

    To assess the effects of tauroursodeoxycholic acid (TUDCA) on bile excretory function, we examined whether TUDCA modulates vesicular exocytosis in the isolated perfused liver of normal rats in the presence of high (1.9 mM) or low (0.19 mM) extracellular Ca++ and in cholestatic rats 24 h after bile duct ligation. In addition, the effects of TUDCA on Ca++ homeostasis were compared in normal and in cholestatic hepatocytes. In the isolated perfused rat liver, TUDCA (25 microM) stimulated a sustained increase in the biliary excretion of horseradish peroxidase, a marker of the vesicular pathway, in the presence of high, but not low extracellular Ca++ or in the cholestatic liver. In contrast, TUDCA stimulated bile flow to the same extent regardless of the concentration of extracellular Ca++ or the presence of cholestasis. In indo-1-loaded hepatocytes, basal cytosolic free Ca++ ([Ca++]i) levels were not different between normal and cholestatic cells. However, in cholestatic cells [Ca++]i increases induced by TUDCA (10 microM) and its 7 alpha-OH epimer taurochenodeoxycholic acid (50 microM) were reduced to 22% and 26%, respectively, compared to normal cells. The impairment of TUDCA-induced [Ca++]i increase in cholestatic cells could be mimicked by exposing normal cells to low extracellular Ca++ (21%) or to the Ca++ channel blocker NiCl2 (23%). These data indicate that (a) dihydroxy bile acid-induced Ca++ entry may be of functional importance in the regulation of hepatocellular vesicular exocytosis, and (b) this Ca++ entry mechanism across the plasma membrane is impaired in cholestatic hepatocytes. We speculate that the beneficial effect of ursodeoxycholic acid in cholestatic liver diseases may be related to the Ca+(+)-dependent stimulation of vesicular exocytosis by its conjugate.

    Topics: Acetylglucosaminidase; Animals; Bile; Biomarkers; Calcium; Cells, Cultured; Cholestasis; Cytosol; Exocytosis; Extracellular Space; Horseradish Peroxidase; Kinetics; Liver; Lysosomes; Male; Phenylephrine; Rats; Rats, Sprague-Dawley; Reference Values; Taurochenodeoxycholic Acid; Taurocholic Acid; Vasopressins

1993
Effect of bile acids on intracellular calcium in isolated rat hepatocyte couplets.
    Biochemical pharmacology, 1993, Jan-26, Volume: 45, Issue:2

    The effects of bile acids on cytosolic free calcium ([Ca2+]i) were studied in single isolated rat hepatocyte couplets using a scanning laser cytometer and the fluorescent dye, indo-1. Cholestatic bile acids, chenodeoxycholate (CDC) and taurolithocholate (TLC) increased [Ca2+]i in a dose-dependent manner. Choleretic bile acids, tauroursodeoxycholate (TUDC) and taurocholate (TC), did not induce any change in [Ca2+]i except TC at very high doses. Treatment with TUDC added concomitantly with CDC or TLC significantly decreased the rise in [Ca2+]i induced by bile acids. These results, obtained with a polarized hepatocyte model that secretes bile, confirmed that cholestatic bile acids increase [Ca2+]i and showed that TUDC inhibits this phenomenon. These data are in agreement with a key role of intracellular calcium in cholestasis.

    Topics: Animals; Bile Acids and Salts; Calcium; Chenodeoxycholic Acid; In Vitro Techniques; Liver; Male; Models, Biological; Rats; Rats, Sprague-Dawley; Taurochenodeoxycholic Acid; Taurolithocholic Acid; Vasopressins

1993