pitavastatin and mevastatin

pitavastatin has been researched along with mevastatin* in 4 studies

Reviews

1 review(s) available for pitavastatin and mevastatin

ArticleYear
Efficacy and safety of long-term treatment with statins for coronary heart disease: A Bayesian network meta-analysis.
    Atherosclerosis, 2016, Volume: 254

    Our study aims to evaluate the efficacy and safety of long-term treatment of statins for coronary heart disease (CHD).. Efficacy outcomes included changes in blood lipids, risk of CHD mortality and all-cause mortality. Safety outcomes were evaluated by the risk of adverse events (AE). Bayesian network meta-analysis was used to compare the direct and indirect effects between different statins.. The systematic review showed that levels of blood lipids decreased during statin treatment. High dose of atorvastatin was the most obvious treatment for the reduction of blood lipids. Network meta-analysis showed that statins were significantly more effective than the control in reducing the risk of CHD mortality (Odds Ratio (OR) 0.69, 95% CI 0.61-0.77) and all-cause mortality (OR 0.84, 95% CI 0.80-0.87). In terms of reducing the risk of CHD morality, fluvastatin (77.3%), atorvastatin (72.3%) and lovastatin (68.4%) had higher cumulative probability than other statins, which were more effective treatments for the reduction of CHD morality. In terms of reducing all-cause mortality, atorvastatin (78.6%), fluvastatin (77.1%) and pitavastatin (74.1%) had higher cumulative probability than other statins, which were more effective treatment for reducing the all-cause mortality. Compared with placebo, statins increased the incidence risk of muscle disease (OR 1.05, 95% CI 1.00-1.10) and kidney disease (OR 1.11, 95% CI 1.05-1.72).. Statins significantly reduced levels of blood lipids, with a high dose of atorvastatin being the most effective in blood-lipid level modification. Statins reduced the risk of CHD mortality and all-cause mortality, with atorvastatin and fluvastatin being the most effective in reducing the risk of CHD mortality and all-cause mortality. Statins increased the risk of muscle disease and kidney damage.

    Topics: Anticholesteremic Agents; Atorvastatin; Bayes Theorem; Coronary Disease; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Indoles; Kidney Diseases; Lipids; Lovastatin; Muscles; Network Meta-Analysis; Patient Safety; Pravastatin; Quinolines; Randomized Controlled Trials as Topic; Simvastatin; Treatment Outcome

2016

Other Studies

3 other study(ies) available for pitavastatin and mevastatin

ArticleYear
Statin suppresses apoptosis in osteoblastic cells: role of transforming growth factor-beta-Smad3 pathway.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2008, Volume: 40, Issue:11

    Statins possess pleiotropic effects in several tissues. Among them, their bone anabolic actions have been recently noted. We have proposed that Smad3, a TGF-beta-signaling molecule, is a promoter of bone formation. However, whether statins would affect TGF-beta-Smad3 pathway in osteoblasts is still unknown. The present study was performed to examine the effects of statin on Smad3 expression and cell apoptosis by employing mouse osteoblastic MC3T3-E1 and rat osteoblastic UMR-106 cells. Statins (pitavastatin, mevastatin, and simvastatin) as well as alendronate increased the levels of Smad3 in MC3T3-E1 cells. The effects of pitavastatin on Smad3 levels were observed from 3 hours and later. Pitavastatin induced the expression of TGF-beta, and cycloheximide, a protein synthesis inhibitor, antagonized the increased levels of pitavastatin on Smad3. On the other hand, pitavastatin antagonized dexamethasone- or etoposide-induced apoptosis in a dose-dependent manner, and Smad3 inactivation by dominant negative Smad3 or an inhibition of endogenous TGF-beta action by SB431542 antagonized anti-apoptotic effects of pitavastatin, indicating that pitavastatin suppressed osteoblast apoptosis partly through TGF-beta-Smad3 pathway. In conclusion, the present study has demonstrated for the first time that statin suppressed cell apoptosis partly through TGF-beta-Smad3 pathway in osteoblastic cells.

    Topics: Alendronate; Animals; Apoptosis; Cell Line; Gene Expression; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lovastatin; Mice; Osteoblasts; Quinolines; Rats; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Simvastatin; Smad3 Protein; Transforming Growth Factor beta

2008
Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia.
    Arteriosclerosis, thrombosis, and vascular biology, 2004, Volume: 24, Issue:8

    Neural apoptosis-regulated convertase (NARC)-1 is the newest member of the proprotein convertase family implicated in the cleavage of a variety of protein precursors. The NARC-1 gene, PCSK9, has been identified recently as the third locus implicated in autosomal dominant hypercholesterolemia (ADH). The 2 other known genes implicated in ADH encode the low-density lipoprotein receptor and apolipoprotein B. As an approach toward the elucidation of the physiological role(s) of NARC-1, we studied its transcriptional regulation.. Using quantitative RT-PCR, we assessed NARC-1 regulation under conditions known to regulate genes involved in cholesterol metabolism in HepG2 cells and in human primary hepatocytes. We found that NARC-1 expression was strongly induced by statins in a dose-dependent manner and that this induction was efficiently reversed by mevalonate. NARC-1 mRNA level was increased by cholesterol depletion but insensitive to liver X receptor activation. Human, mouse, and rat PCSK9 promoters contain 2 typical conserved motifs for cholesterol regulation: a sterol regulatory element (SRE) and an Sp1 site.. PCSK9 regulation is typical of that of the genes implicated in lipoprotein metabolism. In vivo, PCSK9 is probably a target of SRE-binding protein (SREBP)-2.

    Topics: Alitretinoin; Animals; Atorvastatin; Base Sequence; Cell Line; Cholesterol; Consensus Sequence; DNA-Binding Proteins; Gene Expression Regulation; Hepatocytes; Heptanoic Acids; Homeostasis; Humans; Hydroxycholesterols; Hydroxymethylglutaryl CoA Reductases; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Liver X Receptors; Lovastatin; Mevalonic Acid; Mice; Orphan Nuclear Receptors; Promoter Regions, Genetic; Proprotein Convertase 9; Proprotein Convertases; Pyridines; Pyrroles; Quinolines; Rats; Receptors, Cytoplasmic and Nuclear; Regulatory Sequences, Nucleic Acid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sequence Alignment; Sequence Homology, Nucleic Acid; Serine Endopeptidases; Simvastatin; Sp1 Transcription Factor; Species Specificity; Sterol Regulatory Element Binding Protein 2; Transcription Factors; Tretinoin

2004
Relative induction of mRNA for HMG CoA reductase and LDL receptor by five different HMG-CoA reductase inhibitors in cultured human cells.
    Journal of atherosclerosis and thrombosis, 2000, Volume: 7, Issue:3

    The effect of various 3-hydroxy-3 methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors on the induction of HMG-CoA reductase and low density lipoprotein (LDL) receptor mRNA were quantitatively determined in the cultured human hepatoma cell line Hep G2 by means of a ribonuclease protection assay. Lipophilic inhibitors including mevastatin, simvastatin, atorvastatin and NK-104 were able to increase the levels of mRNAs for HMG-CoA reductase and the LDL receptor, but the hydrophilic inhibitor pravastatin was not effective in Hep G2 cells as had previously been reported. The LDL receptor mRNA was induced by NK-104 most effectively between 0.1 to 10 microM among the lipophilic inhibitors, whereas the degrees of induction of HMG-CoA reductase mRNA by these inhibitors did not differ significantly from each other. When cells were treated with a 200-fold excess of the IC50 concentration of each inhibitor, NK-104 was able to induce LDL receptor mRNA most effectively. These results indicate that the effect of HMG-CoA reductase inhibitors on the upregulation of mRNA for reductase and LDL receptor are different from each other and among these lipophilic inhibitors. NK-104 is most effective in inducing LDL receptor mRNA in Hep G2 cells.

    Topics: Atorvastatin; Cell Line; Heptanoic Acids; Humans; Hydroxymethylglutaryl CoA Reductases; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Kinetics; Lovastatin; Pravastatin; Pyrroles; Quinolines; Receptors, LDL; RNA, Messenger; Simvastatin

2000