Page last updated: 2024-08-16

pirinixic acid and 1-anilino-8-naphthalenesulfonate

pirinixic acid has been researched along with 1-anilino-8-naphthalenesulfonate in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (40.00)29.6817
2010's3 (60.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Ahnmark, A; Arnerup, G; Ekroos, K; Elmgren, A; Lelliott, CJ; Lindén, D; Ljungberg, A; Oscarsson, J; Shoulders, CC; William-Olsson, L1
Greenberg, AS; Mashek, DG; Mashek, MT; Sapiro, JM1
Dörffel, K; Haemmerle, G; Mayer, B; Schrammel, A; Wölkart, G; Zechner, R1
Ding, JL; Li, Y; Sun, XF; Wang, L; Wang, R; Zhan, L; Zhou, B; Zhou, XY; Zhou, ZG1
Haemmerle, G; Mayer, B; Mussbacher, M; Schrammel, A; Stessel, H; Wölkart, G; Zechner, R1

Other Studies

5 other study(ies) available for pirinixic acid and 1-anilino-8-naphthalenesulfonate

ArticleYear
Hepatic PGC-1beta overexpression induces combined hyperlipidemia and modulates the response to PPARalpha activation.
    Arteriosclerosis, thrombosis, and vascular biology, 2007, Volume: 27, Issue:12

    Topics: Acetyl-CoA Carboxylase; Adenoviridae; Animals; Anticholesteremic Agents; Apolipoproteins B; CD36 Antigens; Cells, Cultured; Diacylglycerol O-Acyltransferase; Dietary Fats; Disease Models, Animal; Fatty Acid Synthases; Fatty Acids; Gene Expression Regulation; Genetic Vectors; Hyperlipidemia, Familial Combined; Lipase; Lipid Metabolism; Liver; Mice; Mice, Inbred C57BL; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR alpha; Pyrimidines; Receptors, Lipoprotein; RNA, Messenger; Sterol Regulatory Element Binding Protein 1; Trans-Activators; Transcription Factors; Transduction, Genetic; Triglycerides; Up-Regulation

2007
Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity.
    Journal of lipid research, 2009, Volume: 50, Issue:8

    Topics: Animals; Carboxylic Ester Hydrolases; Cells, Cultured; Fatty Acids; Gene Expression; Gene Transfer Techniques; Hepatocytes; Hydrolysis; Lipase; Lipids; Male; Membrane Proteins; Perilipin-2; Peroxisome Proliferators; PPAR alpha; PPAR gamma; Pyrimidines; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; RNA, Messenger; Signal Transduction; Triglycerides

2009
Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist.
    British journal of pharmacology, 2012, Volume: 165, Issue:2

    Topics: Animals; Anticholesteremic Agents; Body Weight; Female; Heart; Heart Rate; In Vitro Techniques; Lipase; Male; Mice; Mice, Knockout; Myocardium; Norepinephrine; Organ Size; PPAR alpha; PPAR gamma; Pyrimidines; Rosiglitazone; Thiazolidinediones; Ventricular Dysfunction, Left

2012
Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats: the effect on Toll-like receptor signaling pathways.
    Pancreas, 2013, Volume: 42, Issue:1

    Topics: Amylases; Animals; Anti-Inflammatory Agents; Biomarkers; Blotting, Western; Calcium; Ceruletide; Cytokines; Disease Models, Animal; Gene Expression Regulation; Indoles; Intercellular Adhesion Molecule-1; Lipase; Male; Neutrophil Infiltration; Pancreas; Pancreatitis; Peroxidase; PPAR alpha; Pyrimidines; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Toll-Like Receptor 2; Toll-Like Receptor 4; Toll-Like Receptor 9; Toll-Like Receptors

2013
Role of the ubiquitin-proteasome system in cardiac dysfunction of adipose triglyceride lipase-deficient mice.
    Journal of molecular and cellular cardiology, 2014, Volume: 77

    Topics: Animals; Apoptosis; Cardiomyopathies; Endoplasmic Reticulum Stress; Female; Gene Expression; Gene Knockout Techniques; Lipase; Male; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NF-kappa B; Oxidative Stress; PPAR alpha; Proteasome Endopeptidase Complex; Proteolysis; Pyrimidines; Signal Transduction; Ubiquitinated Proteins; Ubiquitination

2014